1,084 research outputs found

    Non-Fermi liquid behavior from two-dimensional antiferromagnetic fluctuations: a renormalization-group and large-N analysis

    Full text link
    We analyze the Hertz-Moriya-Millis theory of an antiferromagnetic quantum critical point, in the marginal case of two dimensions (d=2,z=2). Up to next-to-leading order in the number of components (N) of the field, we find that logarithmic corrections do not lead to an enhancement of the Landau damping. This is in agreement with a renormalization-group analysis, for arbitrary N. Hence, the logarithmic effects are unable to account for the behavior reportedly observed in inelastic neutron scattering experiments on CeCu_{6-x}Au_x. We also examine the extended dynamical mean-field treatment (local approximation) of this theory, and find that only subdominant corrections to the Landau damping are obtained within this approximation, in contrast to recent claims.Comment: 15 pages, 8 figure

    Virus shapes and buckling transitions in spherical shells

    Full text link
    We show that the icosahedral packings of protein capsomeres proposed by Caspar and Klug for spherical viruses become unstable to faceting for sufficiently large virus size, in analogy with the buckling instability of disclinations in two-dimensional crystals. Our model, based on the nonlinear physics of thin elastic shells, produces excellent one parameter fits in real space to the full three-dimensional shape of large spherical viruses. The faceted shape depends only on the dimensionless Foppl-von Karman number \gamma=YR^2/\kappa, where Y is the two-dimensional Young's modulus of the protein shell, \kappa is its bending rigidity and R is the mean virus radius. The shape can be parameterized more quantitatively in terms of a spherical harmonic expansion. We also investigate elastic shell theory for extremely large \gamma, 10^3 < \gamma < 10^8, and find results applicable to icosahedral shapes of large vesicles studied with freeze fracture and electron microscopy.Comment: 11 pages, 12 figure

    Statistics of Coulomb blockade peak spacings for a partially open dot

    Full text link
    We show that randomness of the electron wave functions in a quantum dot contributes to the fluctuations of the positions of the conductance peaks. This contribution grows with the conductance of the junctions connecting the dot to the leads. It becomes comparable with the fluctuations coming from the randomness of the single particle spectrum in the dot while the Coulomb blockade peaks are still well-defined. In addition, the fluctuations of the peak spacings are correlated with the fluctuations of the conductance peak heights.Comment: 13 pages, 1 figur

    A rigidity property of asymptotically simple spacetimes arising from conformally flat data

    Full text link
    Given a time symmetric initial data set for the vacuum Einstein field equations which is conformally flat near infinity, it is shown that the solutions to the regular finite initial value problem at spatial infinity extend smoothly through the critical sets where null infinity touches spatial infinity if and only if the initial data coincides with Schwarzschild data near infinity.Comment: 37 page

    A weakly stable algorithm for general Toeplitz systems

    Full text link
    We show that a fast algorithm for the QR factorization of a Toeplitz or Hankel matrix A is weakly stable in the sense that R^T.R is close to A^T.A. Thus, when the algorithm is used to solve the semi-normal equations R^T.Rx = A^Tb, we obtain a weakly stable method for the solution of a nonsingular Toeplitz or Hankel linear system Ax = b. The algorithm also applies to the solution of the full-rank Toeplitz or Hankel least squares problem.Comment: 17 pages. An old Technical Report with postscript added. For further details, see http://wwwmaths.anu.edu.au/~brent/pub/pub143.htm

    Quantum dots in magnetic fields: thermal response of broken symmetry phases

    Full text link
    We investigate the thermal properties of circular semiconductor quantum dots in high magnetic fields using finite temperature Hartree-Fock techniques. We demonstrate that for a given magnetic field strength quantum dots undergo various shape phase transitions as a function of temperature, and we outline possible observable consequences.Comment: In Press, Phys. Rev. B (2001

    Local fluctuations in quantum critical metals

    Full text link
    We show that spatially local, yet low-energy, fluctuations can play an essential role in the physics of strongly correlated electron systems tuned to a quantum critical point. A detailed microscopic analysis of the Kondo lattice model is carried out within an extended dynamical mean-field approach. The correlation functions for the lattice model are calculated through a self-consistent Bose-Fermi Kondo problem, in which a local moment is coupled both to a fermionic bath and to a bosonic bath (a fluctuating magnetic field). A renormalization-group treatment of this impurity problem--perturbative in ϵ=1γ\epsilon=1-\gamma, where γ\gamma is an exponent characterizing the spectrum of the bosonic bath--shows that competition between the two couplings can drive the local-moment fluctuations critical. As a result, two distinct types of quantum critical point emerge in the Kondo lattice, one being of the usual spin-density-wave type, the other ``locally critical.'' Near the locally critical point, the dynamical spin susceptibility exhibits ω/T\omega/T scaling with a fractional exponent. While the spin-density-wave critical point is Gaussian, the locally critical point is an interacting fixed point at which long-wavelength and spatially local critical modes coexist. A Ginzburg-Landau description for the locally critical point is discussed. It is argued that these results are robust, that local criticality provides a natural description of the quantum critical behavior seen in a number of heavy-fermion metals, and that this picture may also be relevant to other strongly correlated metals.Comment: 20 pages, 12 figures; typos in figure 3 and in the main text corrected, version as publishe

    Semiclassical Theory of Coulomb Blockade Peak Heights in Chaotic Quantum Dots

    Full text link
    We develop a semiclassical theory of Coulomb blockade peak heights in chaotic quantum dots. Using Berry's conjecture, we calculate the peak height distributions and the correlation functions. We demonstrate that the corrections to the corresponding results of the standard statistical theory are non-universal and can be expressed in terms of the classical periodic orbits of the dot that are well coupled to the leads. The main effect is an oscillatory dependence of the peak heights on any parameter which is varied; it is substantial for both symmetric and asymmetric lead placement. Surprisingly, these dynamical effects do not influence the full distribution of peak heights, but are clearly seen in the correlation function or power spectrum. For non-zero temperature, the correlation function obtained theoretically is in good agreement with that measured experimentally.Comment: 5 color eps figure

    Effects of the field modulation on the Hofstadter's spectrum

    Full text link
    We study the effect of spatially modulated magnetic fields on the energy spectrum of a two-dimensional (2D) Bloch electron. Taking into account four kinds of modulated fields and using the method of direct diagonalization of the Hamiltonian matrix, we calculate energy spectra with varying system parameters (i.e., the kind of the modulation, the relative strength of the modulated field to the uniform background field, and the period of the modulation) to elucidate that the energy band structure sensitively depends on such parameters: Inclusion of spatially modulated fields into a uniform field leads occurrence of gap opening, gap closing, band crossing, and band broadening, resulting distinctive energy band structure from the Hofstadter's spectrum. We also discuss the effect of the field modulation on the symmetries appeared in the Hofstadter's spectrum in detail.Comment: 7 pages (in two-column), 10 figures (including 2 tables

    Reach in and reach out : the story of the MSc in pipeline engineering at Newcastle University

    Get PDF
    This paper presents an unusual case of university-industry interaction whereby a group of small businesses came together to persuade a university to establish an MSc in Pipeline Engineering. We identify that the course contributed to regional development in four ways. Firstly, it provided graduates for local industry. Secondly, it linked local firms with pipeline engineers world wide and raised the region's profile within that network. Thirdly, it strengthened the research base of the university through the recruitment of pipeline engineers from industry and fourthly, it facilitated the possibility of joint research between the university and local firms. We question whether this model is transferable to other industry sectors/universities. We conclude that this outreach activity has been shaped by the 'reach-in' to the university of the local business community and propose a revised model of university interaction with regional industry. Traditionally universities have been seen as 'reaching out' to regional industry and the collaborations have been viewed as being instigated by the university and often research-based. Our revised model proposes an alternative mechanism whereby collaborations can be instigated by industry and through a teaching-route
    corecore