58 research outputs found
Die Phytoen-Desaturase aus Rubrivivax gelatinosus : funktionelle und strukturelle Faktoren der Anzahl von Reaktionsschritten
Das für die Phytoen-Desaturase (CrtI) aus Rubrivivax gelatinosus kodierende Gen konnte aus genomischer DNA amplifiziert und in unterschiedliche Expressionsvektoren kloniert werden. Die Funktion der Phytoen-Desaturase wurde in vivo durch Komplemetierung einer Phytoen bildenden E. coli-Transformante überprüft. Die heterologe Expression von crtIRg in E. coli, als lösliches und aktives Enzym mit einer molekularen Masse von 57 kDa, konnte nur mit dem Plasmid pPEUcrtIRg erreicht werden. Mittels in vitro Enzymtests konnten kinetische Parameter und der Kofaktor des Enzyms bestimmt werden. Der Km-Wert für das Substrat Phytoen lag bei 14,8 μM, der Vmax-Wert bei 5,2 nmol/h*mg CrtIRg. Für das Substrat Neurosporin konnte ein Km-Wert von 33 μM und ein Vmax-Wert von 0,6 nmol/h*mg CrtIRg ermitteltwerden. FAD steigerte als Kofaktor den Umsatz des Substrates um das 39-fache. Sowohl für die Phytoen-Desaturase aus Rvi. gelatinosus, als auch für die Phytoen-Desaturase aus Rba. sphaeroides konnte in vitro gezeigt werden, dass die Anzahl der an einem Carotinoidmolekül katalysierten Reaktionsschritte stark von der Enzym- bzw. Substratkonzentration abhängt. Bei einer hohen Phytoen- und einer niedrigen Enzymkonzentration wird fast nur Neurosporin gebildet (3 zusätzliche Doppelbindungen), während bei einer hohen Enzym- und einer niedrigen Phytoenkonzentration deutlich mehr Lycopin synthetisiert wird (4 zusätzliche Doppelbindungen). In den jeweiligen Organismen spielt die Konkurrenz der bakteriellen Phytoen-Desaturase mit dem sich in der Carotinoidbiosynthesekette anschließenden Enzym in Bezug auf die Anzahl der eingefügten Doppelbindungen eine wichtige Rolle. Dies konnte in Hemmstoffuntersuchungen am Beispiel zweier Xanthphyllomyces dendrohous-Mutanten gezeigt werden. Die Verringerung der aktiven CrtI-Menge in der Torulin-Mutante DQ1 förderte die Bildung von β-Carotin (nur 4 Desaturierungsschritte). Dagegen führte die Senkung der aktiven Lycopin-Zyklase-Menge in der β-Carotin-Mutante PR1-104 zur Förderung der durch CrtI katalysierten Reaktion mit der Folge, dass hauptsächlich Torulin gebildet wurde (5 Desaturierungsschritte). Mittels Error Prone PCR sowie dem E. coli-Stamm XL1-Red konnte das Gen crtI aus Rvi. gelatinosus mutagenisiert werden. Die erstellten Mutationsbibliotheken konnten in Phytoen bildenden E. coli-Transformanten exprimiert und Klone mit veränderten Phytoen-Desaturasen mittels Farbscreening identifiziert werden. Aus Klonen mit einem veränderten Lycopin/Neurosporin-Verhältnis wurde die DNA isoliert und crtI sequenziert. Dadurch konnten mutierte Gene ermittelt werden, deren modifizierte Expressionsprodukte entweder mehr Lycopin oder fast ausschließlich Neurosporin bildeten. Es zeigte sich, dass die Veränderung der Aminosäure an Position 208 einen starken Einfluss auf die Anzahl der eingefügten Doppelbindungen hat. Die Aminosäure befindet sich in einer membrangebundenen Helixstruktur bei der es sich vermutlich um einen direkt an der katalytischen Reaktion beteiligten Bereich handelt. Es konnte gezeigt werden, dass alle Mutationen, die die Anzahl der katalysierten Reaktionsschritte senkten, Leucin-Prolin-Austausche (oder umgekehrt) waren. Prolin (bzw. Leucin) veränderte in diesen Fällen die Sekundärstruktur des Proteins wodurch, die Funktion gestört wurde. Neben diesen strukturellen Veränderungen wurden Mutationen ermittelt, die zu einer verstärkten Expression der Phytoen-Desaturase führten, was eine erhöhte Lycopinbildung bewirkte. Es zeigte sich, dass bei einigen dieser Mutanten die Replikation der Plasmid-DNA erhöht war. Die starke Replikation ist wahrscheinlich auf eine Verarmung an beladenen tRNA Molekülen zurückzuführen. In ColE1-Plasmiden (pPEU) kann es zu einer unkontrollierten Replikation kommen, die auf Wechselwirkungen zwischen den Replikationsregulierenden Strukturen RNAI und RNAII mit den unbeladenen tRNA Molekülen zurückzuführen ist. Auf der Grundlage der erlangten Erkenntnisse und mittels Computer gestützter Analysen konnte ein Modell der Sekundärstruktur und der Membranassoziation des Enzyms erstellt werden
Phylogenetic and Evolutionary Patterns in Microbial Carotenoid Biosynthesis Are Revealed by Comparative Genomics
BACKGROUND: Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial carotenoid biosynthetic proteins using either used limited datasets or lacking methodological rigor. Given the recent accumulation of microbial genome sequences, a reappraisal of microbial carotenoid biosynthetic diversity and evolution from the perspective of comparative genomics is warranted to validate and complement models of microbial carotenoid diversity and evolution based upon structural and biosynthetic data. METHODOLOGY/PRINCIPAL FINDINGS: Comparative genomics were used to identify and analyze in silico microbial carotenoid biosynthetic pathways. Four major phylogenetic lineages of carotenoid biosynthesis are suggested composed of: (i) Proteobacteria; (ii) Firmicutes; (iii) Chlorobi, Cyanobacteria and photosynthetic eukaryotes; and (iv) Archaea, Bacteroidetes and two separate sub-lineages of Actinobacteria. Using this phylogenetic framework, specific evolutionary mechanisms are proposed for carotenoid desaturase CrtI-family enzymes and carotenoid cyclases. Several phylogenetic lineage-specific evolutionary mechanisms are also suggested, including: (i) horizontal gene transfer; (ii) gene acquisition followed by differential gene loss; (iii) co-evolution with other biochemical structures such as proteorhodopsins; and (iv) positive selection. CONCLUSIONS/SIGNIFICANCE: Comparative genomics analyses of microbial carotenoid biosynthetic proteins indicate a much greater taxonomic diversity then that identified based on structural and biosynthetic data, and divides microbial carotenoid biosynthesis into several, well-supported phylogenetic lineages not evident previously. This phylogenetic framework is applicable to understanding the evolution of specific carotenoid biosynthetic proteins or the unique characteristics of carotenoid biosynthetic evolution in a specific phylogenetic lineage. Together, these analyses suggest a "bramble" model for microbial carotenoid biosynthesis whereby later biosynthetic steps exhibit greater evolutionary plasticity and reticulation compared to those closer to the biosynthetic "root". Structural diversification may be constrained ("trimmed") where selection is strong, but less so where selection is weaker. These analyses also highlight likely productive avenues for future research and bioprospecting by identifying both gaps in current knowledge and taxa which may particularly facilitate carotenoid diversification
Structural and kinetics properties of a mutated phytoene desaturase from Rubrivivax gelatinosus with modified product specificity
- …
