211 research outputs found

    Centrosomal microtubule nucleation regulates radial migration of projection neurons independently of polarization in the developing brain

    Get PDF
    Cortical projection neurons polarize and form an axon while migrating radially. Even though these dynamic processes are closely interwoven, they are regulated separately-the neurons terminate their migration when reaching their destination, the cortical plate, but continue to grow their axons. Here, we show that in rodents, the centrosome distinguishes these processes. Newly developed molecular tools modulating centrosomal microtubule nucleation combined with in vivo imaging uncovered that dysregulation of centro-somal microtubule nucleation abrogated radial migration without affecting axon formation. Tightly regu-lated centrosomal microtubule nucleation was required for periodic formation of the cytoplasmic dilation at the leading process, which is essential for radial migration. The microtubule nucleating factor g-tubulin decreased at neuronal centrosomes during the migratory phase. As distinct microtubule networks drive neuronal polarization and radial migration, this provides insight into how neuronal migratory defects occur without largely affecting axonal tracts in human developmental cortical dysgeneses, caused by mutations in g-tubulin.ISSN:0896-6273ISSN:1097-419

    A placebo-controlled randomised trial of budesonide for PBC following an insufficient response to UDCA

    Get PDF
    Background & Aims: In patients with primary biliary cholangitis (PBC), the efficacy of budesonide, a synthetic corticosteroid displaying high first-pass metabolism, is unresolved. In a placebo-controlled, double-blind trial, we evaluated the added-value of budesonide in those with PBC and ongoing risk of progressive disease despite ursodeoxycholic acid (UDCA) treatment. Methods: We evaluated 62 patients with PBC who had histologically confirmed hepatic inflammatory activity, according to the Ishak score, and an alkaline phosphatase (ALP) >1.5x upper limit of normal (ULN), after at least 6 months of UDCA therapy. Participants were randomly assigned 2:1 to receive budesonide (9 mg/day) or placebo once daily, for 36 months, with UDCA treatment (12-16 mg/kg body weight/day) maintained. Primary efficacy was defined as improvement of liver histology with respect to inflammation and no progression of fibrosis. Secondary outcomes included changes in biochemical markers of liver injury. Results: Recruitment challenges resulted in a study that was underpowered for the primary efficacy analysis. Comparing patients with paired biopsies only (n = 43), the primary histologic endpoint was not met (p>0.05). The proportion of patients with ALP = 15% decrease in ALP and normal bilirubin was higher in the budesonide group than in the placebo group at 12, 24, and 36 months (p Conclusion: Budesonide add-on therapy was not associated with improved liver histology in patients with PBC and insufficient response to UDCA; however, improvements in biochemical markers of disease activity were demonstrated in secondary analyses. Lay summary: Around one-third of patients with primary biliary cholangitis (PBC) needs additional medical therapy alongside ursodeoxycholic acid (UDCA) treatment. In this clinical trial, the addition of the corticosteroid budesonide did not improve liver histology; there were however relevant improvements in liver blood tests. (C) 2020 European Association for the Study of the Liver. Published by Elsevier B.V.Peer reviewe

    Mutations changing tropomodulin affinity for tropomyosin alter neurite formation and extension

    Get PDF
    Assembly of the actin cytoskeleton is an important part of formation of neurites in developing neurons. Tropomodulin, a tropomyosin-dependent capping protein for the pointed end of the actin filament, is one of the key players in this process. Tropomodulin binds tropomyosin in two binding sites. Tmod1 and Tmod2, tropomodulin isoforms found in neurons, were overexpressed in PC12 cells, a model system for neuronal differentiation. Tmod1 did not affect neuronal differentiation; while cells expressing Tmod2 showed a significant reduction in the number and the length of neurites. Both tropomodulins bind short α-, γ- and δ-tropomyosin isoforms. Mutations in one of the tropomyosin-binding sites of Tmod1, which increased its affinity to short γ- and δ-tropomyosin isoforms, caused a decrease in binding short α-tropomyosin isoforms along with a 2-fold decrease in the length of neurites. Our data demonstrate that Tmod1 is involved in neuronal differentiation for proper neurite formation and outgrowth, and that Tmod2 inhibits these processes. The mutations in the tropomyosin-binding site of Tmod1 impair neurite outgrowth, suggesting that the integrity of this binding site is critical for the proper function of Tmod1 during neuronal differentiation

    Microtubules originate asymmetrically at the somatic golgi and are guided via Kinesin2 to maintain polarity within neurons

    Get PDF
    Neurons contain polarised microtubule arrays essential for neuronal function. How microtubule nucleation and polarity are regulated within neurons remains unclear. We show that γ-tubulin localises asymmetrically to the somatic Golgi within Drosophila neurons. Microtubules originate from the Golgi with an initial growth preference towards the axon. Their growing plus ends also turn towards and into the axon, adding to the plus-end-out microtubule pool. Any plus ends that reach a dendrite, however, do not readily enter, maintaining minus-end-out polarity. Both turning towards the axon and exclusion from dendrites depend on Kinesin-2, a plus-end-associated motor that guides growing plus ends along adjacent microtubules. We propose that Kinesin-2 engages with a polarised microtubule network within the soma to guide growing microtubules towards the axon; while at dendrite entry sites engagement with microtubules of opposite polarity generates a backward stalling force that prevents entry into dendrites and thus maintains minus-end-out polarity within proximal dendrites

    How Morphological Constraints Affect Axonal Polarity in Mouse Neurons

    Get PDF
    Neuronal differentiation is under the tight control of both biochemical and physical information arising from neighboring cells and micro-environment. Here we wished to assay how external geometrical constraints applied to the cell body and/or the neurites of hippocampal neurons may modulate axonal polarization in vitro. Through the use of a panel of non-specific poly-L-lysine micropatterns, we manipulated the neuronal shape. By applying geometrical constraints on the cell body we provided evidence that centrosome location was not predictive of axonal polarization but rather follows axonal fate. When the geometrical constraints were applied to the neurites trajectories we demonstrated that axonal specification was inhibited by curved lines. Altogether these results indicated that intrinsic mechanical tensions occur during neuritic growth and that maximal tension was developed by the axon and expressed on straight trajectories. The strong inhibitory effect of curved lines on axon specification was further demonstrated by their ability to prevent formation of multiple axons normally induced by cytochalasin or taxol treatments. Finally we provided evidence that microtubules were involved in the tension-mediated axonal polarization, acting as curvature sensors during neuronal differentiation. Thus, biomechanics coupled to physical constraints might be the first level of regulation during neuronal development, primary to biochemical and guidance regulations

    Aspergillus Myosin-V Supports Polarized Growth in the Absence of Microtubule-Based Transport

    Get PDF
    In the filamentous fungus Aspergillus nidulans, both microtubules and actin filaments are important for polarized growth at the hyphal tip. Less clear is how different microtubule-based and actin-based motors work together to support this growth. Here we examined the role of myosin-V (MYOV) in hyphal growth. MYOV-depleted cells form elongated hyphae, but the rate of hyphal elongation is significantly reduced. In addition, although wild type cells without microtubules still undergo polarized growth, microtubule disassembly abolishes polarized growth in MYOV-depleted cells. Thus, MYOV is essential for polarized growth in the absence of microtubules. Moreover, while a triple kinesin null mutant lacking kinesin-1 (KINA) and two kinesin-3s (UNCA and UNCB) undergoes hyphal elongation and forms a colony, depleting MYOV in this triple mutant results in lethality due to a severe defect in polarized growth. These results argue that MYOV, through its ability to transport secretory cargo, can support a significant amount of polarized hyphal tip growth in the absence of any microtubule-based transport. Finally, our genetic analyses also indicate that KINA (kinesin-1) rather than UNCA (kinesin-3) is the major kinesin motor that supports polarized growth in the absence of MYOV
    corecore