410 research outputs found

    A Small Conductance Calcium-Activated K<sup>+</sup> Channel in C. elegans, KCNL-2, Plays a Role in the Regulation of the Rate of Egg-Laying

    Get PDF
    In the nervous system of mice, small conductance calcium-activated potassium (SK) channels function to regulate neuronal excitability through the generation of a component of the medium afterhyperpolarization that follows action potentials. In humans, irregular action potential firing frequency underlies diseases such as ataxia, epilepsy, schizophrenia and Parkinson's disease. Due to the complexity of studying protein function in the mammalian nervous system, we sought to characterize an SK channel homologue, KCNL-2, in C. elegans, a genetically tractable system in which the lineage of individual neurons was mapped from their early developmental stages. Sequence analysis of the KCNL-2 protein reveals that the six transmembrane domains, the potassium-selective pore and the calmodulin binding domain are highly conserved with the mammalian homologues. We used widefield and confocal fluorescent imaging to show that a fusion construct of KCNL-2 with GFP in transgenic lines is expressed in the nervous system of C. elegans. We also show that a KCNL-2 null strain, kcnl-2(tm1885), demonstrates a mild egg-laying defective phenotype, a phenotype that is rescued in a KCNL-2-dependent manner. Conversely, we show that transgenic lines that overexpress KCNL-2 demonstrate a hyperactive egg-laying phenotype. In this study, we show that the vulva of transgenic hermaphrodites is highly innervated by neuronal processes and by the VC4 and VC5 neurons that express GFP-tagged KCNL-2. We propose that KCNL-2 functions in the nervous system of C. elegans to regulate the rate of egg-laying. © 2013 Chotoo et al

    Functional Analysis of Missense Mutations in Kv8.2 Causing Cone Dystrophy with Supernormal Rod Electroretinogram

    Get PDF
    Mutations in KCNV2 have been proposed as the molecular basis for cone dystrophy with supernormal rod electroretinogram. KCNV2 codes for the modulatory voltage-gated potassium channel α-subunit, Kv8.2, which is incapable of forming functional channels on its own. Functional heteromeric channels are however formed with Kv2.1 in heterologous expression systems, with both α-subunit genes expressed in rod and cone photoreceptors. Of the 30 mutations identified in the KCNV2 gene, we have selected three missense mutations localized in the potassium channel pore and two missense mutations localized in the tetramerization domain for analysis. We characterized the differences between homomeric Kv2.1 and heteromeric Kv2.1/Kv8.2 channels and investigated the influence of the selected mutations on the function of heteromeric channels. We found that two pore mutations (W467G and G478R) led to the formation of nonconducting heteromeric Kv2.1/Kv8.2 channels, whereas the mutations localized in the tetramerization domain prevented heteromer generation and resulted in the formation of homomeric Kv2.1 channels only. Consequently, our study suggests the existence of two distinct molecular mechanisms involved in the disease pathology

    Cell morphology governs directional control in swimming bacteria

    Get PDF
    The ability to rapidly detect and track nutrient gradients is key to the ecological success of motile bacteria in aquatic systems. Consequently, bacteria have evolved a number of chemotactic strategies that consist of sequences of straight runs and reorientations. Theoretically, both phases are affected by fluid drag and Brownian motion, which are themselves governed by cell geometry. Here, we experimentally explore the effect of cell length on control of swimming direction. We subjected Escherichia coli to an antibiotic to obtain motile cells of different lengths, and characterized their swimming patterns in a homogeneous medium. As cells elongated, angles between runs became smaller, forcing a change from a run-and-tumble to a run-and-stop/reverse pattern. Our results show that changes in the motility pattern of microorganisms can be induced by simple morphological variation, and raise the possibility that changes in swimming pattern may be triggered by both morphological plasticity and selection on morphology

    Localization and potential role of matrix metalloproteinase-1 and tissue inhibitors of metalloproteinase-1 and -2 in different phases of bronchopulmonary dysplasia

    Get PDF
    Bronchopulmonary dysplasia (BPD) can evolve in prematurely born infants who require mechanical ventilation because of hyaline membrane disease (HMD). The development of BPD can be divided in an acute, a regenerative, a transitional, and a chronic phase. During these different phases, extensive remodeling of the lung parenchyma with re-epithelialization of the alveoli and formation of fibrosis occurs. Matrix metalloproteinase-1 (MMP-1) is an enzyme that is involved in re-epithelialization processes, and dysregulation of MMP-1 activity contributes to fibrosis. Localization of MMP-1 and its inhibitors, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2, were investigated in lung tissue obtained from infants who died during different phases of BPD development. In all studied cases (n = 50) type-II pneumocytes were found to be immunoreactive for MMP-1, TIMP-1, and TIMP-2. During the acute and regenerative phase of BPD, type-II pneumocytes re-epithelialize the injured alveoli. This may suggest that MMP-1 and its inhibitors, expressed by type-II pneumocytes, play a role in the re-epithelialization process after acute lung injury. Although MMP-1 staining intensity remained constant in type-II pneumocytes during BPD development, TIMP-1 increased during the chronic fibrotic phase. This relative elevation of TIMP-1 compared with MMP-1 is indicative for reduced collagenolytic activity by type-II pneumocytes in chronic BPD and may contribute to fibrosis. Fibrotic foci in chronic BPD contained fibroblasts immunoreactive for MMP-1 and TIMP-1 and -2. This may indicate that decreased collagen turnover by fibroblasts contributes to fibrosis in BPD development

    Undifferentiated liver sarcoma – rare entity: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Undifferentiated Liver Sarcoma, also known as Undifferentiated Embryonal Sarcoma of the Liver, is a rare, highly malignant neoplasm which affects mostly the pediatric population, although a few cases have been reported in adults. It accounts for about 13% of pediatric hepatic malignancies.</p> <p>Case presentation</p> <p>We report a case of undifferentiated liver sarcoma in a 14-year-old Chinese boy who presented with non-specific right hypochondriac pain. Exploratory laparotomy with tumor resection was performed, followed by adjuvant chemotherapy.</p> <p>Conclusion</p> <p>Undifferentiated Liver Sarcoma is a rare, highly malignant hepatic neoplasm affecting almost exclusively the pediatric population. The prognosis is poor but recent evidence shows that long-term survival is possible after complete surgical resection and postoperative chemotherapy.</p

    Prenatal Excess Glucocorticoid Exposure and Adult Affective Disorders:A Role for Serotonergic and Catecholamine Pathways

    Get PDF
    Fetal glucocorticoid exposure is a key mechanism proposed to underlie prenatal ‘programming’ of adult affective behaviours such as depression and anxiety. Indeed, the glucocorticoid metabolising enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which is highly expressed in the placenta and the developing fetus, acts as a protective barrier from the high maternal glucocorticoids which may alter developmental trajectories. The programmed changes resulting from maternal stress or bypass or from the inhibition of 11β-HSD2 are frequently associated with alterations in the hypothalamic-pituitary-adrenal (HPA) axis. Hence, circulating glucocorticoid levels are increased either basally or in response to stress accompanied by CNS region-specific modulations in the expression of both corticosteroid receptors (mineralocorticoid and glucocorticoid receptors). Furthermore, early-life glucocorticoid exposure also affects serotonergic and catecholamine pathways within the brain, with changes in both associated neurotransmitters and receptors. Indeed, global removal of 11β-HSD2, an enzyme that inactivates glucocorticoids, increases anxiety‐ and depressive-like behaviour in mice; however, in this case the phenotype is not accompanied by overt perturbation in the HPA axis but, intriguingly, alterations in serotonergic and catecholamine pathways are maintained in this programming model. This review addresses one of the potential adverse effects of glucocorticoid overexposure in utero, i.e. increased incidence of affective behaviours, and the mechanisms underlying these behaviours including alteration of the HPA axis and serotonergic and catecholamine pathways

    A Deep Insight into the Sialome of Rhodnius neglectus, a vector of chagas disease

    Get PDF
    Background Triatomines are hematophagous insects that act as vectors of Chagas disease. Rhodnius neglectus is one of these kissing bugs found, contributing to the transmission of this American trypanosomiasis. The saliva of hematophagous arthropods contains bioactive molecules responsible for counteracting host haemostatic, inflammatory, and immuneresponses. Methods/Principal Findings Next generation sequencing and mass spectrometry-based protein identification were performed to investigate the content of triatomine R. neglectus saliva.We deposited 4,230 coding DNA sequences (CDS) in GenBank. A set of 636 CDS of proteins of putative secretory nature was extracted from the assembled reads, 73 of them confirmed by proteomic analysis. The sialome of R. neglectus was characterized and serine protease transcripts detected. The presence of ubiquitous protein families was revealed, including lipocalins, serine protease inhibitors, and antigen-5. Metalloproteases, disintegrins, and odorant binding protein families were less abundant. Conclusions/Significance The data presented improve our understanding of hematophagous arthropod sialomes, and aid in understanding hematophagy and the complex interplay among vectors and their vertebrate hosts

    A three-year-old boy with X-linked adrenoleukodystrophy and congenital pulmonary adenomatoid malformation: a case report

    Get PDF
    Abstract Introduction X-linked adrenoleukodystrophy leads to demyelination of the nervous system, adrenal insufficiency, and accumulation of long-chain fatty acids. Most young patients with X-linked adrenoleukodystrophy develop seizures and progressive neurologic deficits, and die within the first two decades of life. Congenital or acquired disorders of the respiratory system have not been previously described in patients with X-linked adrenoleukodystrophy. Case presentation A 3-year-old Arabic boy from Yemen presented with discoloration of the mucous membranes and nail beds, which were considered cyanoses due to methemoglobinemia. He also had shortness of breath, fatigue, emesis and dehydration episodes for which he was admitted to our hospital. Chest radiograph and chest computed tomography scans showed congenital pulmonary adenomatoid malformation. A few weeks before the removal of the malformation, he had a significant episode of hypotension and hypoglycemia. This development required further in-hospital evaluation that led to the diagnosis of adrenal insufficiency and the initiation of treatment with corticosteroids. One year later, he developed seizures and loss of consciousness. Magnetic resonance imaging of his head showed diffuse demyelination secondary to X-linked adrenoleukodystrophy. He was treated with anti-seizure and anti-oxidants, and was referred for bone marrow transplant evaluation. Conclusion The presence of adrenal insufficiency, neurologic deficits and seizures are common manifestations of X-linked adrenoleukodystrophy. The association of congenital lung disease with X-linked adrenoleukodystrophy or Addison\u27s disease has not been described previously

    mTOR: from growth signal integration to cancer, diabetes and ageing

    Get PDF
    In all eukaryotes, the target of rapamycin (TOR) signalling pathway couples energy and nutrient abundance to the execution of cell growth and division, owing to the ability of TOR protein kinase to simultaneously sense energy, nutrients and stress and, in metazoans, growth factors. Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt. In the past few years, a significant advance in our understanding of the regulation and functions of mTOR has revealed the crucial involvement of this signalling pathway in the onset and progression of diabetes, cancer and ageing.National Institutes of Health (U.S.)Howard Hughes Medical InstituteWhitehead Institute for Biomedical ResearchJane Coffin Childs Memorial Fund for Medical Research (Postdoctoral Fellowship)Human Frontier Science Program (Strasbourg, France
    corecore