4,569 research outputs found
An investigation into linearity with cumulative emissions of the climate and carbon cycle response in HadCM3LC
We investigate the extent to which global mean temperature, precipitation, and the carbon cycle are constrained by cumulative carbon emissions throughout four experiments with a fully coupled climate-carbon cycle model. The two paired experiments adopt contrasting, idealised approaches to climate change mitigation at different action points this century, with total emissions exceeding two trillion tonnes of carbon in the later pair. Their initially diverging cumulative emissions trajectories cross after several decades, before diverging again. We find that their global mean temperatures are, to first order, linear with cumulative emissions, though regional differences in temperature of up to 1.5K exist when cumulative emissions of each pair coincide. Interestingly, although the oceanic precipitation response scales with cumulative emissions, the global precipitation response does not, due to a decrease in precipitation over land above cumulative emissions of around one trillion tonnes of carbon (TtC). Most carbon fluxes and stores are less well constrained by cumulative emissions as they reach two trillion tonnes. The opposing mitigation approaches have different consequences for the Amazon rainforest, which affects the linearity with which the carbon cycle responds to cumulative emissions. Averaged over the two fixed-emissions experiments, the transient response to cumulative carbon emissions (TCRE) is 1.95 K TtC-1, at the upper end of the IPCC’s range of 0.8-2.5 K TtC-1
Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica
A high-resolution ice-core record of atmospheric CO2 concentration over the Holocene epoch shows that the global carbon cycle has not been in steady state during the past 11,000 years. Analysis of the CO2 concentration and carbon stable-isotope records, using a one-dimensional carbon-cycle model,uggests that changes in terrestrial biomass and sea surface temperature were largely responsible for the observed millennial-scale changes of atmospheric CO2 concentrations
Variations of the Atlantic meridional overturning circulation in control and transient simulations of the last millennium
The variability of the Atlantic meridional overturing circulation (AMOC) strength is investigated in control experiments and in transient simulations of up to the last millennium using the low-resolution Community Climate System Model version 3. In the transient simulations the AMOC exhibits enhanced low-frequency variability that is mainly caused by infrequent transitions between two semi-stable circulation states which amount to a 10 percent change of the maximum overturning. One transition is also found in a control experiment, but the time-varying external forcing significantly increases the probability of the occurrence of such events though not having a direct, linear impact on the AMOC. The transition from a high to a low AMOC state starts with a reduction of the convection in the Labrador and Irminger Seas and goes along with a changed barotropic circulation of both gyres in the North Atlantic and a gradual strengthening of the convection in the Greenland-Iceland-Norwegian (GIN) Seas. In contrast, the transition from a weak to a strong overturning is induced by decreased mixing in the GIN Seas. As a consequence of the transition, regional sea surface temperature (SST) anomalies are found in the midlatitude North Atlantic and in the convection regions with an amplitude of up to 3 K. The atmospheric response to the SST forcing associated with the transition indicates a significant impact on the Scandinavian surface air temperature (SAT) in the order of 1 K. Thus, the changes of the ocean circulation make a major contribution to the Scandinavian SAT variability in the last millennium
Extreme midlatitude cyclones and their implications for precipitation and wind speed extremes in simulations of the Maunder Minimum versus present day conditions
Extreme midlatitude cyclone characteristics, precipitation, wind speed events, their inter-relationships, and the connection to large-scale atmospheric patterns are investigated in simulations of a prolonged cold period, known as the Maunder Minimum from 1640 to 1715 and compared with today. An ensemble of six simulations for the Maunder Minimum as well as a control simulation for perpetual 1990 conditions are carried out with a coupled atmosphere-ocean general circulation model, i.e., the Climate Community System Model (CCSM). The comparison of the simulations shows that in a climate state colder than today the occurrence of cyclones, the extreme events of precipitation and wind speed shift southward in all seasons in the North Atlantic and the North Pacific. The extremes of cyclone intensity increases significantly in winter in almost all regions, which is related to a stronger meridional temperature gradient and an increase in lower tropospheric baroclinicity. Extremes of cyclone intensity in subregions of the North Atlantic are related to extremes in precipitation and in wind speed during winter. Moreover, extremes of cyclone intensity are also connected to distinct large-scale atmospheric patterns for the different subregions, but these relationships vanish during summer. Analyzing the mean 1,000hPa geopotential height change of the Maunder Minimum simulations compared with the control simulation, we find a similar pattern as the correlation pattern with the cyclone intensity index of the southern Europe cyclones. This illustrates that changes in the atmospheric high-frequency, i.e., the simulated southward shift of cyclones in the North Atlantic and the related increase of extreme precipitation and wind speed in particular in the Mediterranean in winter, are associated with large-scale atmospheric circulation change
Global temperature definition affects achievement of long-term climate goals
The Paris Agreement on climate change aims to limit 'global average temperature' rise to 'well below 2 °C' but reported temperature depends on choices about how to blend air and water temperature data, handle changes in sea ice and account for regions with missing data. Here we use CMIP5 climate model simulations to estimate how these choices affect reported warming and carbon budgets consistent with the Paris Agreement. By the 2090s, under a low-emissions scenario, modelled global near-surface air temperature rise is 15% higher (5%-95% range 6%-21%) than that estimated by an approach similar to the HadCRUT4 observational record. The difference reduces to 8% with global data coverage, or 4% with additional removal of a bias associated with changing sea-ice cover. Comparison of observational datasets with different data sources or infilling techniques supports our model results regarding incomplete coverage. From high-emission simulations, we find that a HadCRUT4 like definition means higher carbon budgets and later exceedance of temperature thresholds, relative to global near-surface air temperature. 2 °C warming is delayed by seven years on average, to 2048 (2035-2060), and CO2 emissions budget for a >50% chance of <2 °C warming increases by 67 GtC (246 GtCO2)
Перспективы использования меланинов лузги подсолнечника для очистки сточных вод пищевых производств от анионных азокрасителей
Изучены сорбционные свойства меланинов лузги подсолнечника по отношению к метиловому оранжевому. Установлено, что для исследованных образцов сорбционная активность по метиловому оранжевому составляет 302,1±1,8 мг/г. Для меланинов выявлено высокое сродство к веществам анионного типа. Полученные результаты определяют возможность разработки на основе меланинов сорбентов для очистки сточных вод пищевых производств от анионных моноазокрасителей.Studied are the sorption properties of melanins of sunflower husks in relation to to methyl orange. Discovered that for the samples studied the sorption activity with relation to to methyl-orange is 302,1±1,8 mg/g. . For melanin it was revealed a high affinity to substances of anionic type. The results obtained determine the possibility of development of melanin based sorbents for the purification of wastewater of food production from anionic azo dye
Особливості та умови формування властивостей техногенних ґрунтів
This work utilises general numerical magnetic resonance imaging MRI simulations to predict the spatial specificity of the blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signal. A Monte Carlo simulation approach was utilized on a microvascular structure consisting of randomly oriented cylinders representing blood vessels. This framework was employed to numerically investigate the spatial specificity, defined as ratio of pial vessel to microvascular signal, of the spin echo BOLD fMRI signal as a function of field strength, echo time and tissue types [grey matter (GM) and cerebrospinal fluid (CSF), respectively]. Spatial specificity of spin echo BOLD fMRI signal was determined to increase with field strength up to 16 T and with maximal specificity for echo time shorter than tissue T(2). In addition, it was found that, for large pial vessels, the extravascular signal decay could not be described using the oversimplified but nevertheless commonly employed mono-exponential signal decay approximation (MEA). Consequently, a recently proposed model relying on the MEA deviates substantially from our results on the spatial specificity. A refinement of this model is proposed based on an available, more detailed signal description. Finally, the effect of CSF on the spatial specificity was investigated. While a large spatial specificity of the spin echo BOLD fMRI signal is observed if a pial vessel is surrounded by grey matter, this is greatly reduced for a pial vessel situated on a GM/CSF interface, rendering the suppression of pial vessels on the cortex surface unlikely
Direct north-south synchronization of abrupt climate change record in ice cores using Beryllium 10
A new, decadally resolved record of the <sup>10</sup>Be peak at 41 kyr from the EPICA Dome C ice core (Antarctica) is used to match it with the same peak in the GRIP ice core (Greenland). This permits a direct synchronisation of the climatic variations around this time period, independent of uncertainties related to the ice age-gas age difference in ice cores. Dansgaard-Oeschger event 10 is in the period of best synchronisation and is found to be coeval with an Antarctic temperature maximum. Simulations using a thermal bipolar seesaw model agree reasonably well with the observed relative climate chronology in these two cores. They also reproduce three Antarctic warming events observed between A1 and A2
Carbon Isotope Constraints on the Deglacial CO2 Rise from Ice Cores
The stable carbon isotope ratio of atmospheric CO2 (d13Catm) is a key parameter in deciphering past carbon cycle changes. Here we present d13Catm data for the past 24,000 years derived from three independent records from two Antarctic ice cores. We conclude that a pronounced 0.3 per mil decrease in d13Catm during the early deglaciation can be best explained by upwelling of old, carbon-enriched waters in the Southern Ocean. Later in the deglaciation, regrowth of the terrestrial biosphere, changes in sea surface temperature, and ocean circulation governed the d13Catm evolution. During the Last Glacial Maximum, d13Catm and atmospheric CO2 concentration were essentially constant, which suggests that the carbon cycle was in dynamic equilibrium and that the net transfer of carbon to the deep ocean had occurred before then
- …
