46,615 research outputs found
Integrated multilevel converter and battery management
A cascaded H-bridge multilevel converter is proposed as a BLDC drive incorporating real-time battery management. Intelligent H-bridges are used to monitor battery cells whilst simultaneously increasing their performance by reducing the variation between cells and controlling their discharge profiles
Hardware-in-the-loop tuning of a feedback controller for a buck converter using a GA
This paper presents a methodology for tuning a PID-based feedback controller for a buck converter using the ITAE controller performance index. The controller parameters are optimized to ensure that a reasonable transient response can be achieved whilst retaining stable operation. Experimental results demonstrate the versatility of the on-line tuning methodology
OpenCL + OpenSHMEM Hybrid Programming Model for the Adapteva Epiphany Architecture
There is interest in exploring hybrid OpenSHMEM + X programming models to
extend the applicability of the OpenSHMEM interface to more hardware
architectures. We present a hybrid OpenCL + OpenSHMEM programming model for
device-level programming for architectures like the Adapteva Epiphany many-core
RISC array processor. The Epiphany architecture comprises a 2D array of
low-power RISC cores with minimal uncore functionality connected by a 2D mesh
Network-on-Chip (NoC). The Epiphany architecture offers high computational
energy efficiency for integer and floating point calculations as well as
parallel scalability. The Epiphany-III is available as a coprocessor in
platforms that also utilize an ARM CPU host. OpenCL provides good functionality
for supporting a co-design programming model in which the host CPU offloads
parallel work to a coprocessor. However, the OpenCL memory model is
inconsistent with the Epiphany memory architecture and lacks support for
inter-core communication. We propose a hybrid programming model in which
OpenSHMEM provides a better solution by replacing the non-standard OpenCL
extensions introduced to achieve high performance with the Epiphany
architecture. We demonstrate the proposed programming model for matrix-matrix
multiplication based on Cannon's algorithm showing that the hybrid model
addresses the deficiencies of using OpenCL alone to achieve good benchmark
performance.Comment: 12 pages, 5 figures, OpenSHMEM 2016: Third workshop on OpenSHMEM and
Related Technologie
Digital control of dual-load LCLC resonant converters
The paper proposes the analysis, design and realisation of dual-output resonant LCLC converters with independent output regulation, employing a single power stage and combined PWM and frequency control. Asymmetric switching of the power devices is used to facilitate independent control of the outputs to provide +5 V and +3.3 V from a 15 V-20 V input supply over a range of load condition
Analysis of self-oscillating DC-DC resonant power converters using a hysteretic relay
The paper presents a technique for exciting resonant DC-DC converters in a self-oscillating manner. The analysis necessary to predict the behaviour of such converters is also given. The oscillation is based on the behaviour of a hysteretic relay with a negative hysteresis transition. Self-oscillating converters benefit from higher efficiency/higher power density than their non-self-oscillating counterparts as they can be operated closer to the tank resonant frequency. The self-oscillating mechanism presented here is also simple and cost effective to implement. A prototype converter is presented in order to verify the theoretical claims
The Wardle Instability in Interstellar Shocks: I. Nonlinear Dynamical Evolution
The nonlinear evolution of unstable C-type shocks in weakly ionized plasmas
is studied by means of time-dependent magnetohydrodynamical simulations. This
study is limited to shocks in magnetically dominated plasmas (in which the
Alfven speed in the neutrals greatly exceeds the sound speed), and
microphysical processes such as ionization and recombination are not followed.
Both two-dimensional simulations of planar perpendicular and oblique C-type
shocks, and fully three-dimensional simulation of a perpendicular shock are
presented.Comment: 20 pages, 7 Postscript figures, LaTeX, accepted by Ap.
Rapid analysis & design methodologies of High-Frequency LCLC Resonant Inverter as Electrodeless Fluorescent Lamp Ballast
The papers presents methodologies for the analysis of 4th-order LCLC resonant power converters operating at 2.63 MHz as fluorescent lamp ballasts, where high frequency operation facilitates capacitive discharge into the tube, with near resonance operation at high load quality factor enabling high efficiency. State-variable dynamic descriptions of the converter are employed to rapidly determine the steady-state cyclic behaviour of the ballast during nominal operation. Simulation and experimental measurements from a prototype ballast circuit driving a 60 cm, 8W T5 fluorescent lamp are also included
Modelling and regulation of dual-output LCLC resonant converters
The analysis, design and control of 4th-order LCLC voltage-output series-parallel resonant converters (SPRCs) for the provision of multiple regulated outputs, is described. Specifically, state-variable concepts are employed and new analysis techniques are developed to establish operating mode boundaries with which to describe the internal behaviour of a dual-output resonant converter topology. The designer is guided through the most important criteria for realising a satisfactory converter, and the impact of parameter choices on performance is explored. Predictions from the resulting models are compared with those obtained from SPICE simulations and measurements from a prototype power supply under closed loop control
- …
