46,615 research outputs found

    Integrated multilevel converter and battery management

    Get PDF
    A cascaded H-bridge multilevel converter is proposed as a BLDC drive incorporating real-time battery management. Intelligent H-bridges are used to monitor battery cells whilst simultaneously increasing their performance by reducing the variation between cells and controlling their discharge profiles

    Hardware-in-the-loop tuning of a feedback controller for a buck converter using a GA

    Get PDF
    This paper presents a methodology for tuning a PID-based feedback controller for a buck converter using the ITAE controller performance index. The controller parameters are optimized to ensure that a reasonable transient response can be achieved whilst retaining stable operation. Experimental results demonstrate the versatility of the on-line tuning methodology

    OpenCL + OpenSHMEM Hybrid Programming Model for the Adapteva Epiphany Architecture

    Full text link
    There is interest in exploring hybrid OpenSHMEM + X programming models to extend the applicability of the OpenSHMEM interface to more hardware architectures. We present a hybrid OpenCL + OpenSHMEM programming model for device-level programming for architectures like the Adapteva Epiphany many-core RISC array processor. The Epiphany architecture comprises a 2D array of low-power RISC cores with minimal uncore functionality connected by a 2D mesh Network-on-Chip (NoC). The Epiphany architecture offers high computational energy efficiency for integer and floating point calculations as well as parallel scalability. The Epiphany-III is available as a coprocessor in platforms that also utilize an ARM CPU host. OpenCL provides good functionality for supporting a co-design programming model in which the host CPU offloads parallel work to a coprocessor. However, the OpenCL memory model is inconsistent with the Epiphany memory architecture and lacks support for inter-core communication. We propose a hybrid programming model in which OpenSHMEM provides a better solution by replacing the non-standard OpenCL extensions introduced to achieve high performance with the Epiphany architecture. We demonstrate the proposed programming model for matrix-matrix multiplication based on Cannon's algorithm showing that the hybrid model addresses the deficiencies of using OpenCL alone to achieve good benchmark performance.Comment: 12 pages, 5 figures, OpenSHMEM 2016: Third workshop on OpenSHMEM and Related Technologie

    Digital control of dual-load LCLC resonant converters

    Get PDF
    The paper proposes the analysis, design and realisation of dual-output resonant LCLC converters with independent output regulation, employing a single power stage and combined PWM and frequency control. Asymmetric switching of the power devices is used to facilitate independent control of the outputs to provide +5 V and +3.3 V from a 15 V-20 V input supply over a range of load condition

    Analysis of self-oscillating DC-DC resonant power converters using a hysteretic relay

    Get PDF
    The paper presents a technique for exciting resonant DC-DC converters in a self-oscillating manner. The analysis necessary to predict the behaviour of such converters is also given. The oscillation is based on the behaviour of a hysteretic relay with a negative hysteresis transition. Self-oscillating converters benefit from higher efficiency/higher power density than their non-self-oscillating counterparts as they can be operated closer to the tank resonant frequency. The self-oscillating mechanism presented here is also simple and cost effective to implement. A prototype converter is presented in order to verify the theoretical claims

    The Wardle Instability in Interstellar Shocks: I. Nonlinear Dynamical Evolution

    Full text link
    The nonlinear evolution of unstable C-type shocks in weakly ionized plasmas is studied by means of time-dependent magnetohydrodynamical simulations. This study is limited to shocks in magnetically dominated plasmas (in which the Alfven speed in the neutrals greatly exceeds the sound speed), and microphysical processes such as ionization and recombination are not followed. Both two-dimensional simulations of planar perpendicular and oblique C-type shocks, and fully three-dimensional simulation of a perpendicular shock are presented.Comment: 20 pages, 7 Postscript figures, LaTeX, accepted by Ap.

    Rapid analysis & design methodologies of High-Frequency LCLC Resonant Inverter as Electrodeless Fluorescent Lamp Ballast

    Get PDF
    The papers presents methodologies for the analysis of 4th-order LCLC resonant power converters operating at 2.63 MHz as fluorescent lamp ballasts, where high frequency operation facilitates capacitive discharge into the tube, with near resonance operation at high load quality factor enabling high efficiency. State-variable dynamic descriptions of the converter are employed to rapidly determine the steady-state cyclic behaviour of the ballast during nominal operation. Simulation and experimental measurements from a prototype ballast circuit driving a 60 cm, 8W T5 fluorescent lamp are also included

    Modelling and regulation of dual-output LCLC resonant converters

    Get PDF
    The analysis, design and control of 4th-order LCLC voltage-output series-parallel resonant converters (SPRCs) for the provision of multiple regulated outputs, is described. Specifically, state-variable concepts are employed and new analysis techniques are developed to establish operating mode boundaries with which to describe the internal behaviour of a dual-output resonant converter topology. The designer is guided through the most important criteria for realising a satisfactory converter, and the impact of parameter choices on performance is explored. Predictions from the resulting models are compared with those obtained from SPICE simulations and measurements from a prototype power supply under closed loop control
    corecore