1,962 research outputs found
Design and development of a high power, low saturation voltage silicon switching transistor Quarterly report
Silicon switching transistor with saturation voltage of 0.1 V at 75 A collector curren
Silicon switching transistor with high power and low saturation voltage
Assembly of two individually encapsulated silicon-chip transistors produces silicon power-transistor that has low electrical resistance and low thermal impedance. Electrical resistance and thermal impedance are low because of short lead lengths, and external contact surfaces are plated to reduce resistance at interfaces
Design and development of a high power, low saturation voltage silicon switching transistor
High power low saturation voltage silicon switching transisto
Technique for anchoring fasteners to honeycomb panels
Two-piece fastener bushing provides mounting surface for components on a three-inch thick honeycomb structure. Specially constructed starter drill and sheet metal drill permit drilling without misalignment. Tapered knife-edge cutting tool removes honeycomb core material without tearing the adjacent material
Reliability Testing of the PABS (Pedestrian and Bicycling Survey) Method
The Pedestrian and Bicycling Survey (PABS) is a questionnaire designed to be economical and straightforward to administer so that it can be used by local governments interested in measuring the amount and purposes of walking and cycling in their communities. In addition, it captures key sociodemographic characteristics of those participating in these activities. Methods: In 2009 and 2010 results from the 4-page mail-out/mail-back PABS were tested for reliability across 2 administrations (test-retest reliability). Two versions--early and refined--were tested separately with 2 independent groups of university students from 4 universities (N = 100 in group 1; N = 87 in group 2). Administrations were 7 to 9 days apart. Results: Almost all survey questions achieved adequate to excellent reliability. Conclusions: Transportation surveys have not typically been tested for reliability making the PABS questionnaire an important new option for improving information collection about travel behavior, particularly walking and cycling
Incremental elasticity for array databases
Relational databases benefit significantly from elasticity, whereby they execute on a set of changing hardware resources provisioned to match their storage and processing requirements. Such flexibility is especially attractive for scientific databases because their users often have a no-overwrite storage model, in which they delete data only when their available space is exhausted. This results in a database that is regularly growing and expanding its hardware proportionally. Also, scientific databases frequently store their data as multidimensional arrays optimized for spatial querying. This brings about several novel challenges in clustered, skew-aware data placement on an elastic shared-nothing database. In this work, we design and implement elasticity for an array database. We address this challenge on two fronts: determining when to expand a database cluster and how to partition the data within it. In both steps we propose incremental approaches, affecting a minimum set of data and nodes, while maintaining high performance. We introduce an algorithm for gradually augmenting an array database's hardware using a closed-loop control system. After the cluster adds nodes, we optimize data placement for n-dimensional arrays. Many of our elastic partitioners incrementally reorganize an array, redistributing data only to new nodes. By combining these two tools, the scientific database efficiently and seamlessly manages its monotonically increasing hardware resources.Intel Corporation (Science and Technology Center for Big Data
LINVIEW: Incremental View Maintenance for Complex Analytical Queries
Many analytics tasks and machine learning problems can be naturally expressed
by iterative linear algebra programs. In this paper, we study the incremental
view maintenance problem for such complex analytical queries. We develop a
framework, called LINVIEW, for capturing deltas of linear algebra programs and
understanding their computational cost. Linear algebra operations tend to cause
an avalanche effect where even very local changes to the input matrices spread
out and infect all of the intermediate results and the final view, causing
incremental view maintenance to lose its performance benefit over
re-evaluation. We develop techniques based on matrix factorizations to contain
such epidemics of change. As a consequence, our techniques make incremental
view maintenance of linear algebra practical and usually substantially cheaper
than re-evaluation. We show, both analytically and experimentally, the
usefulness of these techniques when applied to standard analytics tasks. Our
evaluation demonstrates the efficiency of LINVIEW in generating parallel
incremental programs that outperform re-evaluation techniques by more than an
order of magnitude.Comment: 14 pages, SIGMO
Hypersonic aircraft design
A hypersonic aircraft is designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and it was decided that the aircraft would use one full scale turbofan-ramjet. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic region. After considering aerodynamics, aircraft design, stability and control, cooling systems, mission profile, and landing systems, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets are also taken into consideration in the final design. A hypersonic aircraft was designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and a full scale turbofan-ramjet was chosen. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic reqion. After the aerodynamics, aircraft design, stability and control, cooling systems, mission profile, landing systems, and their physical interactions were considered, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets were also considered in the designing process
- …
