221 research outputs found
Quantitative Microscopy of Hepatic Changes Induced by Phenethyl Isothiocyanate in Fischer-344 Rats Fed Either a Cereal-Based Diet or a Purified Diet
Hepatic changes induced by phenethyl isothiocyanate (PEITC) in the liver of rats were determined by quantitative microscopy. Groups of male Fischer-344 rats were fed either a standard, cereal-based diet (Wayne rodent meal) or a purified diet (AIN-76A) containing PEITC at concentrations of 0.75 and 6.0 mmol/kg for 13 wk. Severe hepatic lipidosis was observed in control rats fed the purified diet. Addition of PEITC to the purified diet significantly reduced lipid content in hepatocytes. In contrast, lipid content in the liver of the rats fed the cereal-based diet containing PEITC was greater than in control rats maintained on the same diet. In addition, dose-related reductions in hepatocyte, lipid droplet, peroxisome, and mitochondrial volumes were observed in PEITC-treated rats fed the cereal-based diet. These results indicate that PEITC exerts differential effects on the liver of rats fed either the cereal-based or purified diet.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68493/2/10.1177_019262339502300602.pd
Impact of gastro-oesophageal reflux on microRNA expression, location and function
We have shown that miRNA expression is altered in the
oesophageal squamous mucosa from individuals with
gastro-oesophageal reflux and ulcerative oesophagitis.
These changes in miR-143, miR-145 and miR-205 expression
appear to be most pronounced in the basal
layer of the oesophageal epithelium. In the context of
gastro-oesophageal reflux these expression changes
might influence proliferation and apoptosis and thereby
regulate epithelial restoration. It is reasonable to hypothesise
that they could represent early molecular events preceding
the development of Barrett’s oesophagus, although
proving this will require further studies as described
above. Future detailed analyses of the role of these miRNAs
in progression from gastro-oesophageal reflux to
Barrett’s oesophagus, and then to oesophageal adenocarcinoma
will be valuable, and may help in efforts to control
and treat these diseases.This study was funded by a Competing Project Grant from the National Health and Medical Research Council of Australia. Cameron Smith was supported by a PROBE-NET PhD scholarship funded by a Strategic research
Partnerships Grant from the Cancer Council of New South Wales
Phenethyl isothiocyanate exhibits antileukemic activity in vitro and in vivo by inactivation of Akt and activation of JNK pathways
Effects of phenethyl isothiocyanate (PEITC) have been investigated in human leukemia cells (U937, Jurkat, and HL-60) as well as in primary human acute myeloid leukemia (AML) cells in relation to apoptosis and cell signaling events. Exposure of cells to PEITC resulted in pronounced increase in the activation of caspase-3, -8, -9, cleavage/degradation of PARP, and apoptosis in dose- and time-dependent manners. These events were accompanied by the caspase-independent downregulation of Mcl-1, inactivation of Akt, as well as activation of Jun N-terminal kinase (JNK). Inhibition of PI3K/Akt by LY294002 significantly enhanced PEITC-induced apoptosis. Conversely, enforced activation of Akt by a constitutively active Akt construct markedly abrogated PEITC-mediated JNK activation, Mcl-1 downregulation, caspase activation, and apoptosis, and also interruption of the JNK pathway by pharmacological or genetically (e.g., siRNA) attenuated PEITC-induced apoptosis. Finally, administration of PEITC markedly inhibited tumor growth and induced apoptosis in U937 xenograft model in association with inactivation of Akt, activation of JNK, as well as downregulation of Mcl-1. Taken together, these findings represent a novel mechanism by which agents targeting Akt/JNK/Mcl-1 pathway potentiate PEITC lethality in transformed and primary human leukemia cells and inhibitory activity of tumor growth of U937 xenograft model
A Fluorescent Probe for Diacetyl Detection
A water-soluble fluorescent probe, rhodamine B hydrazide (RBH), was prepared and its properties for recognition of diacetyl were studied. The method employs the reaction of diacetyl with RBH, a colorless and non-fluorescent rhodamine B spiro form derivative to give a pink-colored fluorescent substance. In weakly acidic media, RBH reacts more selectively with diacetyl than with other carbonyls, causing a large increase in fluorescence intensity and thereby providing an easy assay for the determination of diacetyl
Thermal conductivity and thermal boundary resistance of nanostructures
International audienceWe present a fabrication process of low-cost superlattices and simulations related with the heat dissipation on them. The influence of the interfacial roughness on the thermal conductivity of semiconductor/semiconductor superlattices was studied by equilibrium and non-equilibrium molecular dynamics and on the Kapitza resistance of superlattice's interfaces by equilibrium molecular dynamics. The non-equilibrium method was the tool used for the prediction of the Kapitza resistance for a binary semiconductor/metal system. Physical explanations are provided for rationalizing the simulation results
Supplementation of a western diet with golden kiwifruits (Actinidia chinensis var.'Hort 16A':) effects on biomarkers of oxidation damage and antioxidant protection
<p>Abstract</p> <p>Background</p> <p>The health positive effects of diets high in fruits and vegetables are generally not replicated in supplementation trials with isolated antioxidants and vitamins, and as a consequence the emphasis of chronic disease prevention has shifted to whole foods and whole food products.</p> <p>Methods</p> <p>We carried out a human intervention trial with the golden kiwifruit, Actinidia chinensis, measuring markers of antioxidant status, DNA stability, plasma lipids, and platelet aggregation. Our hypothesis was that supplementation of a normal diet with kiwifruits would have an effect on biomarkers of oxidative status. Healthy volunteers supplemented a normal diet with either one or two golden kiwifruits per day in a cross-over study lasting 2 × 4 weeks. Plasma levels of vitamin C, and carotenoids, and the ferric reducing activity of plasma (FRAP) were measured. Malondialdehyde was assessed as a biomarker of lipid oxidation. Effects on DNA damage in circulating lymphocytes were estimated using the comet assay with enzyme modification to measure specific lesions; another modification allowed estimation of DNA repair.</p> <p>Results</p> <p>Plasma vitamin C increased after supplementation as did resistance towards H<sub>2</sub>O<sub>2</sub>-induced DNA damage. Purine oxidation in lymphocyte DNA decreased significantly after one kiwifruit per day, pyrimidine oxidation decreased after two fruits per day. Neither DNA base excision nor nucleotide excision repair was influenced by kiwifruit consumption. Malondialdehyde was not affected, but plasma triglycerides decreased. Whole blood platelet aggregation was decreased by kiwifruit supplementation.</p> <p>Conclusion</p> <p>Golden kiwifruit consumption strengthens resistance towards endogenous oxidative damage.</p
Etiological study of esophageal squamous cell carcinoma in an endemic region: a population-based case control study in Huaian, China
BACKGROUND: Continuous exposure to various environmental carcinogens and genetic polymorphisms of xenobiotic-metabolizing enzymes (XME) are associated with many types of human cancers, including esophageal squamous cell carcinoma (ESCC). Huaian, China, is one of the endemic regions of ESCC, but fewer studies have been done in characterizing the risk factors of ESCC in this area. The aims of this study is to evaluate the etiological roles of demographic parameters, environmental and food-borne carcinogens exposure, and XME polymorphisms in formation of ESCC, and to investigate possible gene-gene and gene-environment interactions associated with ESCC in Huaian, China. METHODS: A population based case-control study was conducted in 107 ESCC newly diagnosed cases and 107 residency- age-, and sex-matched controls in 5 townships of Huaian. In addition to regular epidemiological and food frequency questionnaire analyses, genetic polymorphisms of phase I enzymes CYP1A1, CYP1B1, CYP2A6, and CYP2E1, and phase II enzymes GSTM1, GSTT1, GSTP1, and microsomal epoxide hydrolase (EPHX) were assessed from genomic DNA using PCR based techniques. RESULTS: Consuming acrid food, fatty meat, moldy food, salted and pickled vegetables, eating fast, introverted personality, passive smoking, a family history of cancer, esophageal lesion, and infection with Helicobacter pylori were significant risk factors for ESCC (P < 0.05). Regular clean up of food storage utensils, green tea consumption, and alcohol abstinence were protective factors for ESCC (P < 0.01). The frequency of the GSTT1 null genotype was higher in cases (59.4%) compared to controls (47.2%) with an odds ratio (OR) of 1.68 and 95% confidence interval (CI) from 0.96 to 2.97 (P = 0.07), especially in males (OR = 2.78; 95% CI = 1.22–6.25; P = 0.01). No associations were found between polymorphisms of CYP1A1, CYP1B1, CYP2A6, CYP2E1, GSTM1, GSTP1, and EPHX and ESCC (P > 0.05). CONCLUSION: Our results demonstrated that dietary and environmental exposures, some demographic parameters and genetic polymorphism of GSTT1 may play important roles in the development of ESCC in Huaian area, China
Lack of efficacy of blueberry in nutritional prevention of azoxymethane-initiated cancers of rat small intestine and colon
<p>Abstract</p> <p>Background</p> <p>Blueberries may lower relative risk for cancers of the gastrointestinal tract. Previous work indicated an inhibitory effect of consumed blueberry (BB) on formation of aberrant crypt foci (ACF) in colons of male Fisher F344 rats (inbred strain). However, effects of BB on colon tumors and in both genders are unknown.</p> <p>Methods</p> <p>We examined efficacy of BB in inhibition of azoxymethane (AOM)-induced colon ACF and intestine tumors in male and female Sprague-Dawley rats (outbred strain). Pregnant rats were fed a diet with or without 10% BB powder; progeny were weaned to the same diet as their dam and received AOM as young adults.</p> <p>Results</p> <p>Male and female rats on control diet had similar numbers of ACF at 6 weeks after AOM administration. BB increased (<it>P </it>< 0.05) ACF numbers within the distal colon of female but not male rats. There was a significant (<it>P </it>< 0.05) diet by gender interaction with respect to total colon ACF number. Colon and duodenum tumor incidences were less in females than males at 17 weeks after AOM. BB tended (0.1 > <it>P </it>> 0.05) to reduce overall gastrointestinal tract tumor incidence in males, however, tumor incidence in females was unaffected (<it>P </it>> 0.1) by BB. There was a tendency (0.1 > <it>P </it>> 0.05) for fewer adenocarcinomas (relative to total of adenomatous polyps plus adenocarcinomas) in colons of female than male tumor-bearing rats; in small intestine, this gender difference was significant (<it>P </it>< 0.05). BB favored (<it>P </it>< 0.05) fewer adenocarcinomas and more adenomatous polyps (as a proportion of total tumor number) in female rat small intestine.</p> <p>Conclusion</p> <p>Results did not indicate robust cancer-preventive effects of BB. Blueberry influenced ACF occurrence in distal colon and tumor progression in duodenum, in gender-specific fashion. Data indicate the potential for slowing tumor progression (adenomatous polyp to adenocarcinoma) by BB.</p
EGCG Enhances the Therapeutic Potential of Gemcitabine and CP690550 by Inhibiting STAT3 Signaling Pathway in Human Pancreatic Cancer
Background: Signal Transducer and Activator of Transcription 3 (STAT3) is an oncogene, which promotes cell survival, proliferation, motility and progression in cancer cells. Targeting STAT3 signaling may lead to the development of novel therapeutic approaches for human cancers. Here, we examined the effects of epigallocathechin gallate (EGCG) on STAT3 signaling in pancreatic cancer cells, and assessed the therapeutic potential of EGCG with gemcitabine or JAK3 inhibitor CP690550 (Tasocitinib) for the treatment and/or prevention of pancreatic cancer. Methodology/Principal Findings: Cell viability and apoptosis were measured by XTT assay and TUNEL staining, respectively. Gene and protein expressions were measured by qRT-PCR and Western blot analysis, respectively. The results revealed that EGCG inhibited the expression of phospho and total JAK3 and STAT3, STAT3 transcription and activation, and the expression of STAT3-regulated genes, resulting in the inhibition of cell motility, migration and invasion, and the induction of caspase-3 and PARP cleavage. The inhibition of STAT3 enhanced the inhibitory effects of EGCG on cell motility and viability. Additionally, gemcitabine and CP690550 alone inhibited STAT3 target genes and synergized with EGCG to inhibit cell viability and induce apoptosis in pancreatic cancer cells. Conclusions/Significance: Overall, these results suggest that EGCG suppresses the growth, invasion and migration of pancreatic cancer cells, and induces apoptosis by interfering with the STAT3 signaling pathway. Moreover, EGCG furthe
Growth-inhibitory effects of the chemopreventive agent indole-3-carbinol are increased in combination with the polyamine putrescine in the SW480 colon tumour cell line
BACKGROUND: Many tumours undergo disregulation of polyamine homeostasis and upregulation of ornithine decarboxylase (ODC) activity, which can promote carcinogenesis. In animal models of colon carcinogenesis, inhibition of ODC activity by difluoromethylornithine (DFMO) has been shown to reduce the number and size of colon adenomas and carcinomas. Indole-3-carbinol (I3C) has shown promising chemopreventive activity against a range of human tumour cell types, but little is known about the effect of this agent on colon cell lines. Here, we investigated whether inhibition of ODC by I3C could contribute to a chemopreventive effect in colon cell lines. METHODS: Cell cycle progression and induction of apoptosis were assessed by flow cytometry. Ornithine decarboxylase activity was determined by liberation of CO(2 )from (14)C-labelled substrate, and polyamine levels were measured by HPLC. RESULTS: I3C inhibited proliferation of the human colon tumour cell lines HT29 and SW480, and of the normal tissue-derived HCEC line, and at higher concentrations induced apoptosis in SW480 cells. The agent also caused a decrease in ODC activity in a dose-dependent manner. While administration of exogenous putrescine reversed the growth-inhibitory effect of DFMO, it did not reverse the growth-inhibition following an I3C treatment, and in the case of the SW480 cell line, the effect was actually enhanced. In this cell line, combination treatment caused a slight increase in the proportion of cells in the G(2)/M phase of the cell cycle, and increased the proportion of cells undergoing necrosis, but did not predispose cells to apoptosis. Indole-3-carbinol also caused an increase in intracellular spermine levels, which was not modulated by putrescine co-administration. CONCLUSION: While indole-3-carbinol decreased ornithine decarboxylase activity in the colon cell lines, it appears unlikely that this constitutes a major mechanism by which the agent exerts its antiproliferative effect, although accumulation of spermine may cause cytotoxicity and contribute to cell death. The precise mechanism by which putrescine enhances the growth inhibitory effect of the agent remains to be elucidated, but does result in cells undergoing necrosis, possibly following accumulation in the G(2)/M phase of the cell cycle
- …
