5,063 research outputs found
Genome sequence of enterovirus D68 from St. Louis, Missouri, USA, 2016
Enterovirus D68 (EV-D68) was rarely observed prior to a widespread outbreak in 2014. We observed its reemergence in St. Louis in 2016 and sequenced the EV-D68 genomes from two patient samples. The 2016 viruses in St. Louis differed from those we had sequenced from the 2014 outbreak but were similar to other viruses circulating nationally in 2016
A scheme for computing surface layer turbulent fluxes from mean flow surface observations
A physical model and computational scheme are developed for generating turbulent surface stress, sensible heat flux and humidity flux from mean velocity, temperature and humidity at some fixed height in the atmospheric surface layer, where conditions at this reference level are presumed known from observations or the evolving state of a numerical atmospheric circulation model. The method is based on coupling the Monin-Obukov surface layer similarity profiles which include buoyant stability effects on mean velocity, temperature and humidity to a force-restore formulation for the evolution of surface soil temperature to yield the local values of shear stress, heat flux and surface temperature. A self-contained formulation is presented including parameterizations for solar and infrared radiant fluxes at the surface. Additional parameters needed to implement the scheme are the thermal heat capacity of the soil per unit surface area, surface aerodynamic roughness, latitude, solar declination, surface albedo, surface emissivity and atmospheric transmissivity to solar radiation
Detection of viruses in clinical samples by use of metagenomic sequencing and targeted sequence capture
The telltale heart: a non-invasive method to determine the energy expenditure of incubating Great Cormorants Phalacrocorax carbo carbo
We studied the energetics of incubating Great Cormorants Phalacrocorax carbo carbo via heart rate and respirometric measurements performed in captive and free-living animals. We applied a modified heart beat frequency (HR) monitor built for use in human athletics as well as respirometry for measurements in four captive-bred cormorants at Neumuenster Zoo, Germany. The obtained data were used to model the relationship between HR and metabolic rate (MR). The resulting correlations were MR (W kg-0.723) = 4.76 + 0.01HR (bpm) during daytime and MR (W kg-0.723) = 2.33 + 0.03HR (bpm) at night. Furthermore, the heart beat frequencies of 5 free-living, incubating cormorants at the Chausey Islands, France, were measured acoustically using artificial eggs while the activities at the nest were observed via video. HR-MR models established in the captive animals were used to determine the activity-dependent energy expenditure in these free-living cormorants. The Median MR was 5.08 W kg-0.723 at night, 6.06 W kg-0.723 while resting and sleeping during daytime, 6.20 W kg-0.723 during preening, gular flutter and unrest and 6.47 W kg-0.723 during nest building. In resting birds we found a nocturnal reduction in the energy expenditure of 16 %. Our method for measurement of heart beat frequency appears promising as a technique for determination of HR with minimal restraint to the anima
The backbone of the climate network
We propose a method to reconstruct and analyze a complex network from data
generated by a spatio-temporal dynamical system, relying on the nonlinear
mutual information of time series analysis and betweenness centrality of
complex network theory. We show, that this approach reveals a rich internal
structure in complex climate networks constructed from reanalysis and model
surface air temperature data. Our novel method uncovers peculiar wave-like
structures of high energy flow, that we relate to global surface ocean
currents. This points to a major role of the oceanic surface circulation in
coupling and stabilizing the global temperature field in the long term mean
(140 years for the model run and 60 years for reanalysis data). We find that
these results cannot be obtained using classical linear methods of multivariate
data analysis, and have ensured their robustness by intensive significance
testing.Comment: 6 pages, 5 figure
Combustor Operability and Performance Verification for HIFiRE Flight 2
As part of the Hypersonic International Flight Research Experimentation (HIFiRE) Direct-Connect Rig (HDCR) test and analysis activity, three-dimensional computational fluid dynamics (CFD) simulations were performed using two Reynolds-Averaged Navier Stokes solvers. Measurements obtained from ground testing in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) were used to specify inflow conditions for the simulations and combustor data from four representative tests were used as benchmarks. Test cases at simulated flight enthalpies of Mach 5.84, 6.5, 7.5, and 8.0 were analyzed. Modeling parameters (e.g., turbulent Schmidt number and compressibility treatment) were tuned such that the CFD results closely matched the experimental results. The tuned modeling parameters were used to establish a standard practice in HIFiRE combustor analysis. Combustor performance and operating mode were examined and were found to meet or exceed the objectives of the HIFiRE Flight 2 experiment. In addition, the calibrated CFD tools were then applied to make predictions of combustor operation and performance for the flight configuration and to aid in understanding the impacts of ground and flight uncertainties on combustor operation
HIFiRE Direct-Connect Rig (HDCR) Phase I Ground Test Results from the NASA Langley Arc-Heated Scramjet Test Facility
The initial phase of hydrocarbon-fueled ground tests supporting Flight 2 of the Hypersonic International Flight Research Experiment (HIFiRE) Program has been conducted in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF). The HIFiRE Program, an Air Force-lead international cooperative program includes eight different flight test experiments designed to target specific challenges of hypersonic flight. The second of the eight planned flight experiments is a hydrocarbon-fueled scramjet flight test intended to demonstrate dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools. A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink, direct-connect ground test article that duplicates both the flowpath lines and the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests are to verify the operability of the HIFiRE isolator/combustor across the Mach 6.0-8.0 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition prior to the HiFIRE payload Critical Design Review. Although the phase I test plans include testing over the Mach 6 to 8 flight simulation range, only Mach 6 testing will be reported in this paper. Experimental results presented here include flowpath surface pressure, temperature, and heat flux distributions that demonstrate the operation of the flowpath over a small range of test conditions around the nominal Mach 6 simulation, as well as a range of fuel equivalence ratios and fuel injection distributions. Both ethylene and a mixture of ethylene and methane (planned for flight) were tested. Maximum back pressure and flameholding limits, as well as a baseline fuel schedule, that covers the Mach 5.84-6.5 test space have been identified
Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells
Clonogenic neural stem cells (NSCs) are self-renewing cells that maintain the capacity to differentiate into brain-specific cell types, and may also replace or repair diseased brain tissue. NSCs can be directly isolated from fetal or adult nervous tissue, or derived from embryonic stem cells. Here, we describe the efficient conversion of human adult bone marrow stromal cells (hMSC) into a neural stem cell-like population (hmNSC, for human marrow-derived NSC-like cells). These cells grow in neurosphere-like structures, express high levels of early neuroectodermal markers, such as the proneural genes NeuroD1, Neurog2, MSl1 as well as otx1 and nestin, but lose the characteristics of mesodermal stromal cells. In the presence of selected growth factors, hmNSCs can be differentiated into the three main neural phenotypes: astroglia, oligodendroglia and neurons. Clonal analysis demonstrates that individual hmNSCs are multipotent and retain the capacity to generate both glia and neurons. Our cell culture system provides a powerful tool for investigating the molecular mechanisms of neural differentiation in adult human NSCs. hmNSCs may therefore ultimately help to treat acute and chronic neurodegenerative diseases
Gaussian capacity of the quantum bosonic channel with additive correlated Gaussian noise
We present an algorithm for calculation of the Gaussian classical capacity of
a quantum bosonic memory channel with additive Gaussian noise. The algorithm,
restricted to Gaussian input states, is applicable to all channels with noise
correlations obeying certain conditions and works in the full input energy
domain, beyond previous treatments of this problem. As an illustration, we
study the optimal input states and capacity of a quantum memory channel with
Gauss-Markov noise [J. Sch\"afer, Phys. Rev. A 80, 062313 (2009)]. We evaluate
the enhancement of the transmission rate when using these optimal entangled
input states by comparison with a product coherent-state encoding and find out
that such a simple coherent-state encoding achieves not less than 90% of the
capacity.Comment: 12+6 pages, 9 figures. Errors corrected, figures were made clearer,
appendix improved and extende
Extreme value distributions and Renormalization Group
In the classical theorems of extreme value theory the limits of suitably
rescaled maxima of sequences of independent, identically distributed random
variables are studied. So far, only affine rescalings have been considered. We
show, however, that more general rescalings are natural and lead to new limit
distributions, apart from the Gumbel, Weibull, and Fr\'echet families. The
problem is approached using the language of Renormalization Group
transformations in the space of probability densities. The limit distributions
are fixed points of the transformation and the study of the differential around
them allows a local analysis of the domains of attraction and the computation
of finite-size corrections.Comment: 16 pages, 5 figures. Final versio
- …
