106 research outputs found
The VMC Survey. V. First results for Classical Cepheids
The VISTA Magellanic Cloud (VMC, PI M.R. Cioni) survey is collecting deep
Ks-band time-series photometry of the pulsating variable stars hosted by the
system formed by the two Magellanic Clouds (MCs) and the "bridge" connecting
them. In this paper we present the first results for Classical Cepheids, from
the VMC observations of two fields in the Large Magellanic Cloud (LMC). The VMC
Ks-band light curves of the Cepheids are well sampled (12-epochs) and of
excellent precision. We were able to measure for the first time the Ks
magnitude of the faintest Classical Cepheids in the LMC (Ks\sim17.5 mag), which
are mostly pulsating in the First Overtone (FO) mode, and to obtain FO
Period-Luminosity (PL), Period-Wesenheit (PW), and Period-Luminosity-Color
(PLC) relations, spanning the full period range from 0.25 to 6 day. Since the
longest period Cepheid in our dataset has a variability period of 23 day, we
have complemented our sample with literature data for brighter F Cepheids. On
this basis we have built a PL relation in the Ks band that, for the first time,
includes short period pulsators, and spans the whole range from 1.6 to 100 days
in period. We also provide the first ever empirical PW and PLC relations using
the (V-Ks) color and time-series Ks photometry. The very small dispersion
(\sim0.07 mag) of these relations makes them very well suited to study the
three-dimensional (3D) geometry of the Magellanic system. The use of "direct"
(parallax- and Baade-Wesselink- based) distance measurements to both Galactic
and LMC Cepheids, allowed us to calibrate the zero points of the PL, PW, and
PLC relations obtained in this paper, and in turn to estimate an absolute
distance modulus of (m-M)0=18.46\pm0.03 for the LMC. This result is in
agreement with most of the latest literature determinations based on Classical
Cepheids.Comment: 12 pages, 7 figures: MNRAS in pres
New Baade-Wesselink distances and radii for four metal-rich Galactic Cepheids
We provided accurate estimates of distances, radii and iron abundances for
four metal-rich Cepheids, namely V340 Ara, UZ Sct, AV Sgr and VY Sgr. The main
aim of this investigation is to constrain their pulsation properties and their
location across the Galactic inner disk. We adopted new accurate NIR (J,H,K)
light curves and new radial velocity measurements for the target Cepheids to
determinate their distances and radii using the Baade-Wesselink technique. In
particular, we adopted the most recent calibration of the IR surface brightness
relation and of the projection factor. Moreover, we also provided accurate
measurements of the iron abundance of the target Cepheids. Current distance
estimates agree within one sigma with similar distances based either on
empirical or on theoretical NIR Period-Luminosity relations. However, the
uncertainties of the Baade-Wesselink distances are on average a factor of 3-4
smaller when compared with errors affecting other distance determinations. Mean
Baade-Wesselink radii also agree at one sigma level with Cepheid radii based
either on empirical or on theoretical Period-Radius relations. Iron abundances
are, within one sigma, similar to the iron contents provided by Andrievsky and
collaborators, thus confirming the super metal-rich nature of the target
Cepheids. We also found that the luminosity amplitudes of classical Cepheids,
at odds with RR Lyrae stars, do not show a clear correlation with the
metal-content. This circumstantial evidence appears to be the consequence of
the Hertzsprung progression together with the dependence of the topology of the
instability strip on metallicity, evolutionary effects and binaries.Comment: 9 pages, 7 figures, A&A accepte
An eclipsing binary distance to the Large Magellanic Cloud accurate to 2 per cent
In the era of precision cosmology it is essential to determine the Hubble
Constant with an accuracy of 3% or better. Currently, its uncertainty is
dominated by the uncertainty in the distance to the Large Magellanic Cloud
(LMC) which as the second nearest galaxy serves as the best anchor point of the
cosmic distance scale. Observations of eclipsing binaries offer a unique
opportunity to precisely and accurately measure stellar parameters and
distances. The eclipsing binary method was previously applied to the LMC but
the accuracy of the distance results was hampered by the need to model the
bright, early-type systems used in these studies. Here, we present distance
determinations to eight long-period, late- type eclipsing systems in the LMC
composed of cool giant stars. For such systems we can accurately measure both
the linear and angular sizes of their components and avoid the most important
problems related to the hot early-type systems. Our LMC distance derived from
these systems is demonstrably accurate to 2.2 % (49.97 +/- 0.19 (statistical)
+/- 1.11 (systematic) kpc) providing a firm base for a 3 % determination of the
Hubble Constant, with prospects for improvement to 2 % in the future.Comment: 34 pages, 5 figures, 13 tables, published in the Nature, a part of
our data comes from new unpublished OGLE-IV photometric dat
Distances, ages, and epoch of formation of globular clusters
We review the results on distances and absolute ages of galactic globular
clusters (GCs) obtained after the release of the Hipparcos catalogue. Several
methods for the Population II local distance scale are discussed, exploiting
NEW RESULTS for RR Lyraes in the Large Magellanic Cloud (LMC). We find that the
so-called Short and Long Distance Scales may be reconciled whether a consistent
reddening scale is adopted for Cepheids and RR Lyrae variables in the LMC.
Distances and ages for the 9 clusters discussed in Paper I are re-derived using
an enlarged sample of local subdwarfs, which includes about 90% of the
metal-poor dwarfs with accurate parallaxes (Delta p/p < 0.12) in the whole
Hipparcos catalogue. On average, our revised distance moduli are decreased by
0.04 mag with respect to Paper I. The corresponding age of the GCs is
t=11.5+-2.6 Gyr (95% confidence range). The relation between Mv(ZAHB) and
metallicity for the nine programme clusters turns out to be
Mv(ZAHB)=(0.18+-0.09)([Fe/H]+1.5)+(0.53+-0.12).Thanks to Hipparcos the major
contribution to the total error budget associated with the subdwarf fitting
technique has been moved from parallaxes to photometric calibrations, reddening
and metallicity scale. This total uncertainty still amounts to about +-0.12
mag. Comparing the corresponding (true) LMC distance modulus 18.64+-0.12 mag
with other existing determinations, we conclude that at present the best
estimate for the distance of the LMC is: 18.54+-0.03+-0.06, suggesting that
distances from the subdwarf fitting method are 1 sigma too long. Consequently,
our best estimate for the age of the GCs is revised to: Age = 12.9+-2.9 Gyr
(95% confidence range). The best relation between Mv(ZAHB) and [Fe/H] is:
Mv(ZAHB) =(0.18+-0.09)([Fe/H]+1.5)+(0.63+-0.07).Comment: 76 pages, 6 encapsulated figures and 6 tables. Latex, uses
aasms4.sty. Revised and improved version, with new data on field RR Lyraes in
LMC. Accepted in the Astrophysical Journa
The Large Magellanic Cloud and the Distance Scale
The Magellanic Clouds, especially the Large Magellanic Cloud, are places
where multiple distance indicators can be compared with each other in a
straight-forward manner at considerable precision. We here review the distances
derived from Cepheids, Red Variables, RR Lyraes, Red Clump Stars and Eclipsing
Binaries, and show that the results from these distance indicators generally
agree to within their errors, and the distance modulus to the Large Magellanic
Cloud appears to be defined to 3% with a mean value of 18.48 mag, corresponding
to 49.7 Kpc. The utility of the Magellanic Clouds in constructing and testing
the distance scale will remain as we move into the era of Gaia.Comment: 23 pages, accepted for publication in Astrophysics and Space Science.
From a presentation at the conference The Fundamental Cosmic Distance Scale:
State of the Art and the Gaia Perspective, Naples, May 201
Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy
We review HB stars in a broad astrophysical context, including both variable
and non-variable stars. A reassessment of the Oosterhoff dichotomy is
presented, which provides unprecedented detail regarding its origin and
systematics. We show that the Oosterhoff dichotomy and the distribution of
globular clusters (GCs) in the HB morphology-metallicity plane both exclude,
with high statistical significance, the possibility that the Galactic halo may
have formed from the accretion of dwarf galaxies resembling present-day Milky
Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the
second-parameter problem is presented. A technique is proposed to estimate the
HB types of extragalactic GCs on the basis of integrated far-UV photometry. The
relationship between the absolute V magnitude of the HB at the RR Lyrae level
and metallicity, as obtained on the basis of trigonometric parallax
measurements for the star RR Lyrae, is also revisited, giving a distance
modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are
studied. Finally, the conductive opacities used in evolutionary calculations of
low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and
Space Scienc
Young and Intermediate-age Distance Indicators
Distance measurements beyond geometrical and semi-geometrical methods, rely
mainly on standard candles. As the name suggests, these objects have known
luminosities by virtue of their intrinsic proprieties and play a major role in
our understanding of modern cosmology. The main caveats associated with
standard candles are their absolute calibration, contamination of the sample
from other sources and systematic uncertainties. The absolute calibration
mainly depends on their chemical composition and age. To understand the impact
of these effects on the distance scale, it is essential to develop methods
based on different sample of standard candles. Here we review the fundamental
properties of young and intermediate-age distance indicators such as Cepheids,
Mira variables and Red Clump stars and the recent developments in their
application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in
Space Science Reviews (Chapter 3 of a special collection resulting from the
May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space
Age
Distances and ages of globular clusters using Hipparcos parallaxes of local subdwarfs
We discuss the impact of Population II and Globular Cluster (GCs) stars on
the derivation of the age of the Universe, and on the study of the formation
and early evolution of galaxies, our own in particular. The long-standing
problem of the actual distance scale to Population II stars and GCs is
addressed, and a variety of different methods commonly used to derive distances
to Population II stars are briefly reviewed. Emphasis is given to the
discussion of distances and ages for GCs derived using Hipparcos parallaxes of
local subdwarfs. Results obtained by different authors are slightly different,
depending on different assumptions about metallicity scale, reddenings, and
corrections for undetected binaries. These and other uncertainties present in
the method are discussed. Finally, we outline progress expected in the near
future.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles',
A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 22
pages including 3 tables and 2 postscript figures, uses Kluwer's crckapb.sty
LaTeX style file, enclose
- …
