26 research outputs found

    Expression and analysis of the glycosylation properties of recombinant human erythropoietin expressed in Pichia pastoris

    Get PDF
    The Pichia pastoris expression system was used to produce recombinant human erythropoietin, a protein synthesized by the adult kidney and responsible for the regulation of red blood cell production. The entire recombinant human erythropoietin (rhEPO) gene was constructed using the Splicing by Overlap Extension by PCR (SOE-PCR) technique, cloned and expressed through the secretory pathway of the Pichia expression system. Recombinant erythropoietin was successfully expressed in P. pastoris. The estimated molecular mass of the expressed protein ranged from 32 kDa to 75 kDa, with the variation in size being attributed to the presence of rhEPO glycosylation analogs. A crude functional analysis of the soluble proteins showed that all of the forms were active in vivo

    Diagnostics and treatment of respiratory tract infections (excluding community-acquired pneumonia) in outpatient treated children without severe underlying diseases

    Full text link

    Relationships between the N-glycan structures and biological activities of recombinant human erythropoietins produced using different culture conditions and purification procedures.

    No full text
    Eight preparations of recombinant human erythropoietin (EPO) with differing isoform compositions were produced by using different culture conditions and purification procedures. The N-glycan structures of these EPOs were analysed using a recently developed profiling procedure and identified using matrix-assisted laser desorption ionization mass spectrometry. The specific activities of each of the EPOs were estimated by in vivo and in vitro mouse bioassays. The eight EPOs were found to differ in their isoform compositions (as judged by isoelectric focusing), their N-glycan profiles, and in their in vivo and in vitro bioactivities. N-glycan analyses identified at least 23 different structures among these EPOs, including bi-, tri- and tetra-antennary N-glycans, with or without fucosylation or N-acetyllactosamine extensions, and sialylated to varying degrees. Mass spectrometry also indicated the presence of N-glycans with incomplete outer chains, terminating in N-acetylglucosamine residues, and of molecular masses consistent with phosphorylated or sulphated oligomannoside structures. The tetrasialylated tetra-antennary N-glycan contents of the eight rEPOs were found to be significantly and positively correlated with their specific activities as estimated by mouse in vivo bioassay, and significantly and negatively correlated with their specific activities as estimated by mouse in vitro bioassay. It was concluded that the tetrasialylated tetra-antennary N-glycan content of EPO is a major determinant for its in vivo biological activity in the mouse
    corecore