1,187 research outputs found
Electrostatics in wind-blown sand
Wind-blown sand, or "saltation," is an important geological process, and the
primary source of atmospheric dust aerosols. Significant discrepancies exist
between classical saltation theory and measurements. We show here that these
discrepancies can be resolved by the inclusion of sand electrification in a
physically based saltation model. Indeed, we find that electric forces enhance
the concentration of saltating particles and cause them to travel closer to the
surface, in agreement with measurements. Our results thus indicate that sand
electrification plays an important role in saltation.Comment: 4 journal pages, 5 figures, and supplementary material. Article is in
press at PR
Drop Splashing on a Dry Smooth Surface
The corona splash due to the impact of a liquid drop on a smooth dry
substrate is investigated with high speed photography. A striking phenomenon is
observed: splashing can be completely suppressed by decreasing the pressure of
the surrounding gas. The threshold pressure where a splash first occurs is
measured as a function of the impact velocity and found to scale with the
molecular weight of the gas and the viscosity of the liquid. Both experimental
scaling relations support a model in which compressible effects in the gas are
responsible for splashing in liquid solid impacts.Comment: 11 pages, 4 figure
Upstream-binding factor is sequestered into herpes simplex virus type 1 replication compartments
Previous reports have shown that adenovirus recruits nucleolar protein upstream-binding factor (UBF) into adenovirus DNA replication centres. Here, we report that despite having a different mode of viral DNA replication, herpes simplex virus type 1 (HSV-1) also recruits UBF into viral DNA replication centres. Moreover, as with adenovirus, enhanced green fluorescent protein-tagged fusion proteins of UBF inhibit viral DNA replication. We propose that UBF is recruited to the replication compartments to aid replication of HSV-1 DNA. In addition, this is a further example of the role of nucleolar components in viral life cycle
Adaptability and innovation in healthcare facilities. Lessons from the past for future developments
Selfsimilar solutions in a sector for a quasilinear parabolic equation
We study a two-point free boundary problem in a sector for a quasilinear
parabolic equation. The boundary conditions are assumed to be spatially and
temporally "self-similar" in a special way. We prove the existence, uniqueness
and asymptotic stability of an expanding solution which is self-similar at
discrete times. We also study the existence and uniqueness of a shrinking
solution which is self-similar at discrete times.Comment: 23 page
A heterotrimeric G protein, G alpha i-3, on Golgi membranes regulates the secretion of a heparan sulfate proteoglycan in LLC-PK1 epithelial cells
A heterotrimeric G-alpha-i subunit, alpha-i-3, is localized on Golgi membranes in LLC-PK1 and NRK epithelial cells where it colocalizes with mannosidase II by immunofluorescence. The alpha-i-3 was found to be localized on the cytoplasmic face of Golgi cisternae and it was distributed across the whole Golgi stack. The alpha-i-3 subunit is found on isolated rat liver Golgi membranes by Western blotting and G-alpha-i-3 on the Golgi apparatus is ADP ribosylated by pertussis toxin. LLC-PK1 cells were stably transfected with G-alpha-i-3 on an MT-1, inducible promoter in order to overexpress alpha-i-3 on Golgi membranes. The intracellular processing and constitutive secretion of the basement membrane heparan sulfate proteoglycan (HSPG) was measured in LLC-PK1 cells. Overexpression of alpha-i-3 on Golgi membranes in transfected cells retarded the secretion of HSPG and accumulated precursors in the medial-trans-Golgi. This effect was reversed by treatment of cells with pertussis toxin which results in ADP-ribosylation and functional uncoupling of G-alpha-i-3 on Golgi membranes. These results provide evidence for a novel role for the pertussis toxin sensitive G-alpha-i-3 protein in Golgi trafficking of a constitutively secreted protein in epithelial cells
VEGETATION FIRE FUELS MAPPING IN THE SAN DIEGO CITY CANYONS – A METHOD COMPARISON
Fire risk is a major threat to life, property and natural resources in southern California. Recent fire disasters occurred in autumn 2003 and 2007. Fire risk management deals with these hazards, input data are collected, analyzed and evaluated. One of the most important input data is the vegetation density in the endangered areas. Here we describe methods to map vegetation density forming five hazard classes. The main objective of this study is to explore the benefits of using remote sensed data for the accurate classification of vegetation in San Diego city canyons. Three very high resolution remote sensing data sets (< 1 m) were used in comparison: scanned color infrared film (CIR) airborne, digital multi-spectral airborne (ADS40) and digital multi-spectral satellite imagery (QuickBird). Different classification approaches (e.g. pixel-based, segment-based and knowledge-based) were tested and analyzed to separate the vegetation into five hazard classes. Accuracy assessment indicated low overall accuracies of 58 % on average. With regard to an optimized classification result in particular unsupervised and segment-based classification can be recommended. The overall accuracy for these two methods reached around 62 %. The use of specially selected reference areas for validation helped to increase the accuracies up to 81 %. Also a separating between three instead of five different hazard classes resulted in accuracies around 80 %. Furthermore it could be shown that all three data sets can be used for successful classification procedures. The resulting fire risk maps can help to reduce or prevent fire hazards. The maps are a basis for the brush management of the Fir
Sandy contourite drift in the late Miocene Rifian Corridor (Morocco):Reconstruction of depositional environments in a foreland-basin seaway
The Rifian Corridor was a seaway between the Atlantic Ocean and the Mediterranean Sea during the late Miocene. The seaway progressively closed, leading to the Messinian Salinity Crisis in the Mediterranean Sea. Despite the key palaeogeographic importance of the Rifian Corridor, patterns of sediment transport within the seaway have not been thoroughly studied. In this study, we investigated the upper Miocene sedimentation and bottom current pathways in the South Rifian Corridor. The planktic and benthic foraminifera of the upper Tortonian and lower Messinian successions allow us to constrain the age and palaeo-environment of deposition. Encased in silty marls deposited at 150–300 m depth, there are (i) 5 to 50 m thick, mainly clastic sandstone bodies with unidirectional cross-bedding; and (ii) 50 cm thick, mainly clastic, tabular sandstone beds with bioturbation, mottled silt, lack of clear base or top, and bi-gradational sequences. Furthermore, seismic facies representing elongated mounded drifts and associated moat are present at the western mouth of the seaway. We interpret these facies as contourites: the products of a westward sedimentary drift in the South Rifian Corridor. The contourites are found only on the northern margin of the seaway, thus suggesting a geostrophic current flowing westward along slope and then northward. This geostrophic current may have been modulated by tides. By comparing these fossil examples with the modern Gulf of Cadiz, we interpret these current-dominated deposits as evidence of late Miocene Mediterranean overflow into the Atlantic Ocean, through the Rifian Corridor. This overflow may have affected late Miocene ocean circulation and climate, and the overflow deposits may represent one of the first examples of mainly clastic contourites exposed on land
Oceanographic processes and products around the Iberian margin:A new multidisciplinary approach
- …
