4,572 research outputs found
Implementation of a new bi-directional solar modelling method for complex facades within the ESP-r building simulation program
This paper provides an overview of a new method for modelling the total solar energy transmittance. It is implemented in the ESP-r building simulation program to model complex façades such as double glazed façades with external, internal or integrated shading devices. This new model has been validated and tested for several cases. The new model required changes to the solar control simulation algorithm and the user interface, so a new “Advanced optics menu” was also introduced into ESP-r. The paper presents the interface development and application of the new technique to different simulation configurations (especially different complex façades with shading devices) in a standard office building
Spatially and Temporally Explicit Energy System Modelling to Support the Transition to a Low Carbon Energy Infrastructure – Case Study for Wind Energy in the UK
Renewable energy sources and electricity demand vary with time and space and the energy system is constrained by the location of the current infrastructure in place. The transitioning to a low carbon energy society can be facilitated by combining long term planning of infrastructure with taking spatial and temporal characteristics of the energy system into account. There is a lack of studies addressing this systemic view. We soft-link two models in order to analyse long term investment decisions in generation, transmission and storage capacities and the effects of short-term fluctuation of renewable supply: The national energy system model UKTM (UK TIMES model) and a dispatch model. The modelling approach combines the benefits of two models: an energy system model to analyse decarbonisation pathways and a power dispatch model that can evaluate the technical feasibility of those pathways and the impact of intermittent renewable energy sources on the power market. Results give us the technical feasibility of the UKTM solution from 2010 until 2050. This allows us to determine lower bounds of flexible elements and feeding them back in an iterative process (e.g. storage, demand side control, balancing). We apply the methodology to study the long-term investments of wind infrastructure in the United Kingdom
Temporary suspension of visiting during norovirus outbreaks in NHS Boards and the independent care home sector in Scotland: a cross-sectional survey of practice
Limitation of energy deposition in classical N body dynamics
Energy transfers in collisions between classical clusters are studied with
Classical N Body Dynamics calculations for different entrance channels. It is
shown that the energy per particle transferred to thermalised classical
clusters does not exceed the energy of the least bound particle in the cluster
in its ``ground state''. This limitation is observed during the whole time of
the collision, except for the heaviest system.Comment: 13 pages, 15 figures, 1 tabl
Synergies and trade-offs between governance and costs in electricity system transition
Affordability and costs of an energy transition are often viewed as the most influential drivers. Conversely, multi-level transitions theory argues that governance and the choices of key actors, such as energy companies, government and civil society, drive the transition, not only on the basis of costs. This paper combines the two approaches and presents a cost appraisal of the UK transition to a low-carbon electricity system under alternate governance logics. A novel approach is used that links qualitative governance narratives with quantitative transition pathways (electricity system scenarios) and their appraisal. The results contrast the dominant market-led transition pathway (Market Rules) with alternate pathways that have either stronger governmental control elements (Central Co-ordination), or bottom-up proactive engagement of civil society (Thousand Flowers). Market Rules has the lowest investment costs by 2050. Central Co-ordination is more likely to deliver the energy policy goals and possibly even a synergistic reduction in the total system costs, if policies can be enacted and maintained. Thousand Flowers, which envisions wider participation of the society, comes at the expense of higher investment and total system costs. The paper closes with a discussion of the policy implications from cost drivers and the roles of market, government and society
Multidimensional integrable systems and deformations of Lie algebra homomorphisms
We use deformations of Lie algebra homomorphisms to construct deformations of
dispersionless integrable systems arising as symmetry reductions of
anti--self--dual Yang--Mills equations with a gauge group Diff.Comment: 14 pages. An example of a reduction to the Beltrami equation added.
New title. Final version, published in JM
Molecular dynamics simulations of oxide memory resistors (memristors)
Reversible bipolar nano-switches that can be set and read electronically in a
solid-state two-terminal device are very promising for applications. We have
performed molecular-dynamics simulations that mimic systems with oxygen
vacancies interacting via realistic potentials and driven by an external bias
voltage. The competing short- and long-range interactions among charged mobile
vacancies lead to density fluctuations and short-range ordering, while
illustrating some aspects of observed experimental behavior, such as memristor
polarity inversion.Comment: 15 pages, 5 figure
Gate Coupling to Nanoscale Electronics
The realization of single-molecule electronic devices, in which a
nanometer-scale molecule is connected to macroscopic leads, requires the
reproducible production of highly ordered nanoscale gaps in which a molecule of
interest is electrostatically coupled to nearby gate electrodes. Understanding
how the molecule-gate coupling depends on key parameters is crucial for the
development of high-performance devices. Here we directly address this,
presenting two- and three-dimensional finite-element electrostatic simulations
of the electrode geometries formed using emerging fabrication techniques. We
quantify the gate coupling intrinsic to these devices, exploring the roles of
parameters believed to be relevant to such devices. These include the thickness
and nature of the dielectric used, and the gate screening due to different
device geometries. On the single-molecule (~1nm) scale, we find that device
geometry plays a greater role in the gate coupling than the dielectric constant
or the thickness of the insulator. Compared to the typical uniform nanogap
electrode geometry envisioned, we find that non-uniform tapered electrodes
yield a significant three orders of magnitude improvement in gate coupling. We
also find that in the tapered geometry the polarizability of a molecular
channel works to enhance the gate coupling
- …
