1,008 research outputs found
Deep electron and hole polarons and bipolarons in amorphous oxide
Amorphous (a)-HfO2 is a prototype high dielectric constant insulator with wide technological applications. Using ab initio calculations we show that excess electrons and holes can trap in a-HfO2 in energetically much deeper polaron states than in the crystalline monoclinic phase. The electrons and holes localize at precursor sites, such as elongated Hf-O bonds or undercoordinated Hf and O atoms, and the polaronic relaxation is amplified by the local disorder of amorphous network. Single electron polarons produce states in the gap at ∼2 eV below the bottom of the conduction band with average trapping energies of 1.0 eV. Two electrons can form even deeper bipolaron states on the same site. Holes are typically localized on undercoordinated O ions with average trapping energies of 1.4 eV. These results advance our general understanding of charge trapping in amorphous oxides by demonstrating that deep polaron states are inherent and do not require any bond rupture to form precursor sites
Intrinsic Charge Trapping in Amorphous Oxide Films: Status and Challenges
We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states caused by the disorder of amorphous metal oxide films. We start from presenting the results for amorphous (a) HfO<sub>2</sub>, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy (EPDS) measurements and theoretical calculations using density functional theory (DFT) shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO<sub>2</sub>. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modelling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO<sub>2</sub> and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO<sub>2</sub>, a-Al<sub>2</sub>O<sub>3</sub>, a-TiO<sub>2</sub>. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum (CBM) can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO<sub>2</sub> and a-SiO<sub>2</sub> weakens Hf(Si)-O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O<sup>2-</sup> ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection conditions
A simple time series approach can be used to estimate individual wild reindeer calving dates and calving sites from GPS tracking data
Properties of intrinsic point defects and dimers in hexagonal boron nitride
Hexagonal boron nitride (hBN) is a wide gap 2D layered material with good insulating properties. Intrinsic point defects in hBN play an important role in its applications as a dielectric in 2D electronic devices. However, the electronic properties of these defects are still poorly understood. We have calculated the structure and properties of a wide range of intrinsic point defects in the bulk of hBN using hybrid density functional theory (DFT). These include vacancies and interstitial states of B and N as well as di- and tri-vacancies. For each isolated defect, multiple charge states are calculated, and for each charge state multiple spin states are investigated. Positions of defect charge transition levels in the band gap of hBN are calculated. In particular, we predict that B vacancies are likely to be negatively charged in contact with graphene and other metals. Calculations of the interaction between vacancies predict that divacancies in both B and N sublattices are strongly binding. Moreover, the interaction of single B and N vacancies in adjacent layers induces the creation of -N--N- and -B--B- molecular bridges, which greatly distort the local structure, leading to local bond weakening. These results provide further insight into the properties of defects which can be responsible for degradation of hBN based devices
Managing lifestyle change to reduce coronary risk: a synthesis of qualitative research on peoples’ experiences
Background
Coronary heart disease is an incurable condition. The only approach known to slow its progression is healthy lifestyle change and concordance with cardio-protective medicines. Few people fully succeed in these daily activities so potential health improvements are not fully realised. Little is known about peoples’ experiences of managing lifestyle change. The aim of this study was to synthesise qualitative research to explain how participants make lifestyle change after a cardiac event and explore this within the wider illness experience.
Methods
A qualitative synthesis was conducted drawing upon the principles of meta-ethnography. Qualitative studies were identified through a systematic search of 7 databases using explicit criteria. Key concepts were identified and translated across studies. Findings were discussed and diagrammed during a series of audiotaped meetings.
Results
The final synthesis is grounded in findings from 27 studies, with over 500 participants (56% male) across 8 countries. All participants experienced a change in their self-identity from what was ‘familiar’ to ‘unfamiliar’. The transition process involved ‘finding new limits and a life worth living’ , ‘finding support for self’ and ‘finding a new normal’. Analyses of these concepts led to the generation of a third order construct, namely an ongoing process of ‘reassessing past, present and future lives’ as participants considered their changed identity. Participants experienced a strong urge to get back to ‘normal’. Support from family and friends could enable or constrain life change and lifestyle changes. Lifestyle change was but one small part of a wider ‘life’ change that occurred.
Conclusions
The final synthesis presents an interpretation, not evident in the primary studies, of a person-centred model to explain how lifestyle change is situated within ‘wider’ life changes. The magnitude of individual responses to a changed health status varied. Participants experienced distress as their notion of self identity shifted and emotions that reflected the various stages of the grief process were evident in participants’ accounts. The process of self-managing lifestyle took place through experiential learning; the level of engagement with lifestyle change reflected an individual’s unique view of the balance needed to manage ‘realistic change’ whilst leading to a life that was perceived as ‘worth living’. Findings highlight the importance of providing person centred care that aligns with both psychological and physical dimensions of recovery which are inextricably linked
Role of long-range exact exchange in polaron charge transition levels: The case of MgO
Predicting the degree of localization and calculating the trapping energies of polarons in insulators by density functional theory (DFT) is challenging. Hybrid functionals are often reparametrized to obtain accurate results and the a priori selection of these parameters is still an open question. Here we test the accuracy of several range-separated hybrid functionals, all reparametrized to produce an accurate band gap, by calculating the charge transition levels (CTLs) of experimentally well-studied hole polaron defect centers in MgO. We show that the functional with screened long-range exact exchange is moderately but consistently more accurate than functionals which do not include long-range exact exchange. We provide evidence that the source of the improved accuracy is the eigenvalue associated with the valence band maximum of the bulk material. We discuss the extent to which this accuracy relates to Koopmans' compliance of the defect energy level
Applying refinement to the use of mice and rats in rheumatoid arthritis research
Rheumatoid arthritis (RA) is a painful, chronic disorder and there is currently an unmet need for effective therapies that will benefit a wide range of patients. The research and development process for therapies and treatments currently involves in vivo studies, which have the potential to cause discomfort, pain or distress. This Working Group report focuses on identifying causes of suffering within commonly used mouse and rat ‘models’ of RA, describing practical refinements to help reduce suffering and improve welfare without compromising the scientific objectives. The report also discusses other, relevant topics including identifying and minimising sources of variation within in vivo RA studies, the potential to provide pain relief including analgesia, welfare assessment, humane endpoints, reporting standards and the potential to replace animals in RA research
Electron trapping in ferroelectric HfO2
Charge trapping study at 300 and 77 K in ferroelectric (annealed Al- or Si-doped) and nonferroelectric (unannealed and/or undoped)
HfO
2
films grown by atomic layer deposition reveals the presence of “deep” and “shallow” electron traps with volume concentrations in the
10
19
−
cm
−
3
range. The concentration of deep traps responsible for electron trapping at 300 K is virtually insensitive to the oxide doping by Al or Si but slightly decreases in films crystallized by high-temperature annealing in oxygen-free ambient. This behavior indicates that the trapping sites are intrinsic and probably related to disorder in
HfO
2
rather than to the oxygen deficiency of the film. Electron injection at 77 K allowed us to fill shallow electron traps energetically distributed at ∼0.2 eV. These electrons are mobile and populate states with thermal ionization energies in the range ∼0.6–0.7 eV below the
HfO
2
conduction band (CB). The trap energy depth and marginal sensitivity of their concentration to crystallization annealing or film doping with Si or Al suggests that these traps are associated with boundaries between crystalline grains and interfaces between crystalline and amorphous regions in
HfO
2
films. This hypothesis is supported by density functional theory calculations of electron trapping at surfaces of monoclinic, tetragonal, and orthorhombic phases of
HfO
2
. The calculated trap states are consistent with the observed thermal ionization (0.7–1.0 eV below the
HfO
2
CB) and photoionization energies (in the range of 2.0–3.5 eV below the
HfO
2
CB) and support their intrinsic polaronic nature
Adolescent Self-Organization and Adult Smoking and Drinking over Fifty Years of Follow-Up:The British 1946 Birth Cohort
Variations in markers of adolescent self-organization predict a range of economic and health-related outcomes in general population studies. Using a population-based birth cohort study we investigated associations between adolescent self-organization and two common factors over adulthood influencing health, smoking and alcohol consumption. The MRC National Survey of Health and Development (the British 1946 birth cohort) was used to test associations between a dimensional measure of adolescent self-organization derived from teacher ratings, and summary longitudinal measures of smoking and alcohol consumption over the ensuing five decades. Multinomial regression models were adjusted for sex, adolescent emotional and conduct problems, occupational social class of origin, childhood cognition, educational attainment and adult occupational social class. With all covariates adjusted, higher adolescent self-organization was associated with fewer smoking pack years, although not with quitting; there was no association with alcohol consumption across adulthood (none or heavy compared with light to moderate). Adolescent self-organization appears to be protective against smoking, but not against heavy alcohol consumption. Interpretation of this differential effect should be embedded in an understanding of the social and sociodemographic context in which these health behaviours occur over time
- …
