5,610 research outputs found

    Statistical correlation of structural mode shapes from test measurements and NASTRAN analytical values

    Get PDF
    The software and procedures of a system of programs used to generate a report of the statistical correlation between NASTRAN modal analysis results and physical tests results from modal surveys are described. Topics discussed include: a mathematical description of statistical correlation, a user's guide for generating a statistical correlation report, a programmer's guide describing the organization and functions of individual programs leading to a statistical correlation report, and a set of examples including complete listings of programs, and input and output data

    Positioning systems in Minkowski space-time: Bifurcation problem and observational data

    Full text link
    In the framework of relativistic positioning systems in Minkowski space-time, the determination of the inertial coordinates of a user involves the {\em bifurcation problem} (which is the indeterminate location of a pair of different events receiving the same emission coordinates). To solve it, in addition to the user emission coordinates and the emitter positions in inertial coordinates, it may happen that the user needs to know {\em independently} the orientation of its emission coordinates. Assuming that the user may observe the relative positions of the four emitters on its celestial sphere, an observational rule to determine this orientation is presented. The bifurcation problem is thus solved by applying this observational rule, and consequently, {\em all} of the parameters in the general expression of the coordinate transformation from emission coordinates to inertial ones may be computed from the data received by the user of the relativistic positioning system.Comment: 10 pages, 7 figures. The version published in PRD contains a misprint in the caption of Figure 3, which is here amende

    Bounds on Quantum Correlations in Bell Inequality Experiments

    Get PDF
    Bell inequality violation is one of the most widely known manifestations of entanglement in quantum mechanics; indicating that experiments on physically separated quantum mechanical systems cannot be given a local realistic description. However, despite the importance of Bell inequalities, it is not known in general how to determine whether a given entangled state will violate a Bell inequality. This is because one can choose to make many different measurements on a quantum system to test any given Bell inequality and the optimization over measurements is a high-dimensional variational problem. In order to better understand this problem we present algorithms that provide, for a given quantum state, both a lower bound and an upper bound on the maximal expectation value of a Bell operator. Both bounds apply techniques from convex optimization and the methodology for creating upper bounds allows them to be systematically improved. In many cases these bounds determine measurements that would demonstrate violation of the Bell inequality or provide a bound that rules out the possibility of a violation. Examples are given to illustrate how these algorithms can be used to conclude definitively if some quantum states violate a given Bell inequality.Comment: 13 pages, 1 table, 2 figures. Updated version as published in PR

    On Approximation of the Eigenvalues of Perturbed Periodic Schrodinger Operators

    Full text link
    This paper addresses the problem of computing the eigenvalues lying in the gaps of the essential spectrum of a periodic Schrodinger operator perturbed by a fast decreasing potential. We use a recently developed technique, the so called quadratic projection method, in order to achieve convergence free from spectral pollution. We describe the theoretical foundations of the method in detail, and illustrate its effectiveness by several examples.Comment: 17 pages, 2 tables and 2 figure

    Numerical Integration of Nonlinear Wave Equations for General Relativity

    Get PDF
    A second-order numerical implementation is given for recently derived nonlinear wave equations for general relativity. The Gowdy T3^3 cosmology is used as a test bed for studying the accuracy and convergence of simulations of one-dimensional nonlinear waves. The complete freedom in space-time slicing in the present formulation is exploited to compute in the Gowdy line-element. Second-order convergence is found by direct comparison of the results with either analytical solutions for polarized waves, or solutions obtained from Gowdy's reduced wave equations for the more general unpolarized waves. Some directions for extensions are discussed.Comment: 19 pages (LaTex), 3 figures (ps

    Mirror formation control in the vicinity of an asteroid

    Get PDF
    Two strategies are presented for the positioning and control of a spacecraft formation designed to focus sunlight onto a point on the surface of asteroid, thereby sublimating the material and ejecting debris creating thrust. In the first approach, the formation is located at artficial equilibrium points around the asteroid and controlled using the force from the solar radiation pressure. The second approach determines the optimal periodic formation orbits, subject to the gravitational perturbations from the asteroid, the solar radiation pressure and the control acceleration derived from a control law

    Properties of continuous Fourier extension of the discrete cosine transform and its multidimensional generalization

    Full text link
    A versatile method is described for the practical computation of the discrete Fourier transforms (DFT) of a continuous function g(t)g(t) given by its values gjg_{j} at the points of a uniform grid FNF_{N} generated by conjugacy classes of elements of finite adjoint order NN in the fundamental region FF of compact semisimple Lie groups. The present implementation of the method is for the groups SU(2), when FF is reduced to a one-dimensional segment, and for SU(2)×...×SU(2)SU(2)\times ... \times SU(2) in multidimensional cases. This simplest case turns out to result in a transform known as discrete cosine transform (DCT), which is often considered to be simply a specific type of the standard DFT. Here we show that the DCT is very different from the standard DFT when the properties of the continuous extensions of these two discrete transforms from the discrete grid points tj;j=0,1,...Nt_j; j=0,1, ... N to all points tFt \in F are considered. (A) Unlike the continuous extension of the DFT, the continuous extension of (the inverse) DCT, called CEDCT, closely approximates g(t)g(t) between the grid points tjt_j. (B) For increasing NN, the derivative of CEDCT converges to the derivative of g(t)g(t). And (C), for CEDCT the principle of locality is valid. Finally, we use the continuous extension of 2-dimensional DCT to illustrate its potential for interpolation, as well as for the data compression of 2D images.Comment: submitted to JMP on April 3, 2003; still waiting for the referee's Repor

    Analytic, Group-Theoretic Density Profiles for Confined, Correlated N-Body Systems

    Full text link
    Confined quantum systems involving NN identical interacting particles are to be found in many areas of physics, including condensed matter, atomic and chemical physics. A beyond-mean-field perturbation method that is applicable, in principle, to weakly, intermediate, and strongly-interacting systems has been set forth by the authors in a previous series of papers. Dimensional perturbation theory was used, and in conjunction with group theory, an analytic beyond-mean-field correlated wave function at lowest order for a system under spherical confinement with a general two-body interaction was derived. In the present paper, we use this analytic wave function to derive the corresponding lowest-order, analytic density profile and apply it to the example of a Bose-Einstein condensate.Comment: 15 pages, 2 figures, accepted by Physics Review A. This document was submitted after responding to a reviewer's comment

    Homeless drug users' awareness and risk perception of peer "Take Home Naloxone" use – a qualitative study

    Get PDF
    BACKGROUND Peer use of take home naloxone has the potential to reduce drug related deaths. There appears to be a paucity of research amongst homeless drug users on the topic. This study explores the acceptability and potential risk of peer use of naloxone amongst homeless drug users. From the findings the most feasible model for future treatment provision is suggested. METHODS In depth face-to-face interviews conducted in one primary care centre and two voluntary organisation centres providing services to homeless drug users in a large UK cosmopolitan city. Interviews recorded, transcribed and analysed thematically by framework techniques. RESULTS Homeless people recognise signs of a heroin overdose and many are prepared to take responsibility to give naloxone, providing prior training and support is provided. Previous reports of the theoretical potential for abuse and malicious use may have been overplayed. CONCLUSION There is insufficient evidence to recommend providing "over the counter" take home naloxone" to UK homeless injecting drug users. However a programme of peer use of take home naloxone amongst homeless drug users could be feasible providing prior training is provided. Peer education within a health promotion framework will optimise success as current professionally led health promotion initiatives are failing to have a positive impact amongst homeless drug users
    corecore