192 research outputs found
Recommended from our members
In the Light of Evolution, Volume V: Cooperation and Conflict (an Introduction)
Considering Intra-individual Genetic Heterogeneity to Understand Biodiversity
In this chapter, I am concerned with the concept of Intra-individual Genetic Hetereogeneity (IGH) and its potential influence on biodiversity estimates. Definitions of biological individuality are often indirectly dependent on genetic sampling -and vice versa. Genetic sampling typically focuses on a particular locus or set of loci, found in the the mitochondrial, chloroplast or nuclear genome. If ecological function or evolutionary individuality can be defined on the level of multiple divergent genomes, as I shall argue is the case in IGH, our current genetic sampling strategies and analytic approaches may miss out on relevant biodiversity. Now that more and more examples of IGH are available, it is becoming possible to investigate the positive and negative effects of IGH on the functioning and evolution of multicellular individuals more systematically. I consider some examples and argue that studying diversity through the lens of IGH facilitates thinking not in terms of units, but in terms of interactions between biological entities. This, in turn, enables a fresh take on the ecological and evolutionary significance of biological diversity
Migration in the social stage of Dictyostelium discoideum amoebae impacts competition
Interaction conditions can change the balance of cooperation and conflict in multicellular groups. After aggregating together, cells of the social amoeba Dictyostelium discoideum may migrate as a group (known as a slug) to a new location. We consider this migration stage as an arena for social competition and conflict because the cells in the slug may not be from a genetically homogeneous population. In this study, we examined the interplay of two seemingly diametric actions, the solitary action of kin recognition and the collective action of slug migration in D. discoideum, to more fully understand the effects of social competition on fitness over the entire lifecycle. We compare slugs composed of either genetically homogenous or heterogeneous cells that have migrated or remained stationary in the social stage of the social amoeba Dictyostelium discoideum. After migration of chimeric slugs, we found that facultative cheating is reduced, where facultative cheating is defined as greater contribution to spore relative to stalk than found for that clone in the clonal state. In addition our results support previous findings that competitive interactions in chimeras diminish slug migration distance. Furthermore, fruiting bodies have shorter stalks after migration, even accounting for cell numbers at that time. Taken together, these results show that migration can alleviate the conflict of interests in heterogeneous slugs. It aligns their interest in finding a more advantageous place for dispersal, where shorter stalks suffice, which leads to a decrease in cheating behavior
The multicellularity genes of dictyostelid social amoebas
The evolution of multicellularity enabled specialization of cells, but required novel signalling mechanisms for regulating cell differentiation. Early multicellular organisms are mostly extinct and the origins of these mechanisms are unknown. Here using comparative genome and transcriptome analysis across eight uni- and multicellular amoebozoan genomes, we find that 80% of proteins essential for the development of multicellular Dictyostelia are already present in their unicellular relatives. This set is enriched in cytosolic and nuclear proteins, and protein kinases. The remaining 20%, unique to Dictyostelia, mostly consists of extracellularly exposed and secreted proteins, with roles in sensing and recognition, while several genes for synthesis of signals that induce cell-type specialization were acquired by lateral gene transfer. Across Dictyostelia, changes in gene expression correspond more strongly with phenotypic innovation than changes in protein functional domains. We conclude that the transition to multicellularity required novel signals and sensors rather than novel signal processing mechanisms
Communication in bacteria: an ecological and evolutionary perspective
Individual bacteria can alter their behaviour through chemical interactions between organisms in microbial communities - this is generally referred to as quorum sensing. Frequently, these interactions are interpreted in terms of communication to mediate coordinated, multicellular behaviour. We show that the nature of interactions through quorum-sensing chemicals does not simply involve cooperative signals, but entails other interactions such as cues and chemical manipulations. These signals might have a role in conflicts within and between species. The nature of the chemical interaction is important to take into account when studying why and how bacteria react to the chemical substances that are produced by other bacteria
Allozyme variation and sociogenetic structure of Polistes satan Bequaert 1940 colonies (Hymenoptera, Vespidae)
Extreme Polygyny: Multi-seasonal “Hypergynous” Nesting in the Introduced Paper Wasp Polistes dominulus
Francisella tularensis Elicits IL-10 via a PGE2-Inducible Factor, to Drive Macrophage MARCH1 Expression and Class II Down-Regulation
Francisella tularensis is a bacterial pathogen that uses host-derived PGE2 to subvert the host's adaptive immune responses in multiple ways. Francisella-induced PGE2 acts directly on CD4 T cells to blunt production of IFN-γ. Francisella-induced PGE2 can also elicit production of a >10 kDa soluble host factor termed FTMØSN (F. tularensis
macrophage supernatant), which acts on IFN-γ pre-activated MØ to down-regulate MHC class II expression via a ubiquitin-dependent mechanism, blocking antigen presentation to CD4 T cells. Here, we report that FTMØSN-induced down-regulation of MØ class II is the result of the induction of MARCH1, and that MØ expressing MARCH1 “resistant” class II molecules are resistant to FTMØSN-induced class II down-regulation. Since PGE2 can induce IL-10 production and IL-10 is the only reported cytokine able to induce MARCH1 expression in monocytes and dendritic cells, these findings suggested that IL-10 is the active factor in FTMØSN. However, use of IL-10 knockout MØ established that IL-10 is not the active factor in FTMØSN, but rather that Francisella-elicited PGE2 drives production of a >10 kDa host factor distinct from IL-10. This factor then drives MØ IL-10 production to induce MARCH1 expression and the resultant class II down-regulation. Since many human pathogens such as Salmonella typhi, Mycobacterium tuberculosis and Legionella pneumophila also induce production of host PGE2, these results suggest that a yet-to-be-identified PGE2-inducible host factor capable of inducing IL-10 is central to the immune evasion mechanisms of multiple important human pathogens
Prediction of social structure and genetic relatedness in colonies of the facultative polygynous stingless bee Melipona bicolor (Hymenoptera, Apidae)
Stingless bee colonies typically consist of one single-mated mother queen and her worker offspring. The stingless bee Melipona bicolor (Hymenoptera: Apidae) shows facultative polygyny, which makes this species particularly suitable for testing theoretical expectations concerning social behavior. In this study, we investigated the social structure and genetic relatedness among workers from eight natural and six manipulated colonies of M. bicolor over a period of one year. The populations of M. bicolor contained monogynous and polygynous colonies. The estimated genetic relatedness among workers from monogynous and polygynous colonies was 0.75 ± 0.12 and 0.53 ± 0.16 (mean ± SEM), respectively. Although the parental genotypes had significant effects on genetic relatedness in monogynous and polygynous colonies, polygyny markedly decreased the relatedness among nestmate workers. Our findings also demonstrate that polygyny in M. bicolor may arise from the adoption of related or unrelated queens
Genetic diversity and population structure of Polistes nimpha based on DNA microsatellite markers
- …
