442 research outputs found
Cytotoxic and antibacterial activities of endophytic fungi isolated from plants at the National Park, Pahang, Malaysia
<p>Abstract</p> <p>Background</p> <p>Endophytes, microorganisms which reside in plant tissues, have potential in producing novel metabolites for exploitation in medicine. Cytotoxic and antibacterial activities of a total of 300 endophytic fungi were investigated.</p> <p>Methods</p> <p>Endophytic fungi were isolated from various parts of 43 plants from the National Park Pahang, Malaysia. Extracts from solid state culture were tested for cytotoxicity against a number of cancer cell lines using the MTT assay. Antibacterial activity was determined using the disc diffusion method.</p> <p>Results</p> <p>A total of 300 endophytes were isolated from various parts of plants from the National Park, Pahang. 3.3% of extracts showed potent (IC<sub>50 </sub>< 0.01 μg/ml) cytotoxic activity against the murine leukemic P388 cell line and 1.7% against a human chronic myeloid leukemic cell line K562. <it>Sporothrix </it>sp. (KK29FL1) isolated from <it>Costus speciosus </it>showed strong cytotoxicity against colorectal carcinoma (HCT116) and human breast adenocarcinoma (MCF7) cell lines with IC<sub>50 </sub>values of 0.05 μg/ml and 0.02 μg/ml, respectively. Antibacterial activity was demonstrated for 8% of the extracts.</p> <p>Conclusion</p> <p>Results indicate the potential for production of bioactive agents from endophytes of the tropical rainforest flora.</p
Recommended from our members
Wheat seed embryo excision enables the creation of axenic seedlings and Koch’s postulates testing of putative bacterial endophytes
Early establishment of endophytes can play a role in pathogen suppression and improve seedling development. One route for establishment of endophytes in seedlings is transmission of bacteria from the parent plant to the seedling via the seed. In wheat seeds, it is not clear whether this transmission route exists, and the identities and location of bacteria within wheat seeds are unknown. We identified bacteria in the wheat (Triticum aestivum) cv. Hereward seed environment using embryo excision to determine the location of the bacterial load. Axenic wheat seedlings obtained with this method were subsequently used to screen a putative endophyte bacterial isolate library for endophytic competency. This absence of bacteria recovered from seeds indicated low bacterial abundance and/or the presence of inhibitors. Diversity of readily culturable bacteria in seeds was low with 8 genera identified, dominated by Erwinia and Paenibacillus. We propose that anatomical restrictions in wheat limit embryo associated vertical transmission, and that bacterial load is carried in the seed coat, crease tissue and endosperm. This finding facilitates the creation of axenic wheat plants to test competency of putative endophytes and also provides a platform for endophyte competition, plant growth, and gene expression studies without an indigenous bacterial background
Approaches in biotechnological applications of natural polymers
Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)
An oleaginous endophyte Bacillus subtilis HB1310 isolated from thin-shelled walnut and its utilization of cotton stalk hydrolysate for lipid production
Genomic Analysis of the Hydrocarbon-Producing, Cellulolytic, Endophytic Fungus Ascocoryne sarcoides
The microbial conversion of solid cellulosic biomass to liquid biofuels may provide a renewable energy source for transportation fuels. Endophytes represent a promising group of organisms, as they are a mostly untapped reservoir of metabolic diversity. They are often able to degrade cellulose, and they can produce an extraordinary diversity of metabolites. The filamentous fungal endophyte Ascocoryne sarcoides was shown to produce potential-biofuel metabolites when grown on a cellulose-based medium; however, the genetic pathways needed for this production are unknown and the lack of genetic tools makes traditional reverse genetics difficult. We present the genomic characterization of A. sarcoides and use transcriptomic and metabolomic data to describe the genes involved in cellulose degradation and to provide hypotheses for the biofuel production pathways. In total, almost 80 biosynthetic clusters were identified, including several previously found only in plants. Additionally, many transcriptionally active regions outside of genes showed condition-specific expression, offering more evidence for the role of long non-coding RNA in gene regulation. This is one of the highest quality fungal genomes and, to our knowledge, the only thoroughly annotated and transcriptionally profiled fungal endophyte genome currently available. The analyses and datasets contribute to the study of cellulose degradation and biofuel production and provide the genomic foundation for the study of a model endophyte system
Analysis of endophytic fungi in roots of Santalum album Linn. and its host plant Kuhnia rosmarinifolia Vent.
Fungal Endophyte Diversity in Sarracenia
Fungal endophytes were isolated from 4 species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, 8 within the Ascomycota and 4 within the Basidiomycota, were identified based on PCR amplification and sequencing of the internal transcribed spacer sequences of nuclear ribosomal DNA (ITS rDNA) with taxonomic identity assigned using the NCBI nucleotide megablast search tool. Endophytes are known to produce a large number of metabolites, some of which may contribute to the protection and survival of the host. We speculate that endophyte-infected Sarracenia may benefit from their fungal associates by their influence on nutrient availability from within pitchers and, possibly, by directly influencing the biota within pitchers
Estimates of new and total productivity in central Long Island Sound from in situ measurements of nitrate and dissolved oxygen
Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Estuaries and Coasts 36 (2013): 74-97, doi:10.1007/s12237-012-9560-5.Biogeochemical cycles in estuaries are regulated by a diverse set of physical and
biological variables that operate over a variety of time scales. Using in situ optical sensors, we
conducted a high-frequency time-series study of several biogeochemical parameters at a mooring
in central Long Island Sound from May to August 2010. During this period, we documented
well-defined diel cycles in nitrate concentration that were correlated to dissolved oxygen, wind
stress, tidal mixing, and irradiance. By filtering the data to separate the nitrate time series into
various signal components, we estimated the amount of variation that could be ascribed to each
process. Primary production and surface wind stress explained 59% and 19%, respectively, of the
variation in nitrate concentrations. Less frequent physical forcings, including large-magnitude wind events and spring tides, served to decouple the relationship between oxygen, nitrate, and
sunlight on about one-quarter of study days. Daytime nitrate minima and dissolved oxygen
maxima occurred nearly simultaneously on the majority (> 80%) of days during the study period;
both were strongly correlated with the daily peak in irradiance. Nighttime nitrate maxima
reflected a pattern in which surface-layer stocks were depleted each afternoon and recharged the
following night. Changes in nitrate concentrations were used to generate daily estimates of new
primary production (182 ± 37 mg C m-2 d-1) and the f-ratio (0.25), i.e., the ratio of production
based on nitrate to total production. These estimates, the first of their kind in Long Island Sound,
were compared to values of community respiration, primary productivity, and net ecosystem
metabolism, which were derived from in situ measurements of oxygen concentration. Daily
averages of the three metabolic parameters were 1660 ± 431, 2080 ± 419, and 429 ± 203 mg C
m-2 d-1, respectively. While the system remained weakly autotrophic over the duration of the
study period, we observed very large day-to-day differences in the f-ratio and in the various
metabolic parameters.This work was supported by the Yale
Institute for Biospheric Studies, the Sounds Conservancy of the Quebec-Labrador Foundation,
and the Yale School of Forestry and Environmental Studies Carpenter-Sperry Fund.2014-01-0
Fungal endophytes from arid areas of Andalusia: high potential sources for antifungal and antitumoral agents
Native plant communities from arid areas present distinctive characteristics to survive in extreme
conditions. The large number of poorly studied endemic plants represents a unique potential
source for the discovery of novel fungal symbionts as well as host-specific endophytes not yet
described. The addition of adsorptive polymeric resins in fungal fermentations has been seen to
promote the production of new secondary metabolites and is a tool used consistently to generate
new compounds with potential biological activities. A total of 349 fungal strains isolated from 63
selected plant species from arid ecosystems located in the southeast of the Iberian Peninsula, were
characterized morphologically as well as based on their ITS/28S ribosomal gene sequences. The fungal
community isolated was distributed among 19 orders including Basidiomycetes and Ascomycetes,
being Pleosporales the most abundant order. In total, 107 different genera were identified being
Neocamarosporium the genus most frequently isolated from these plants, followed by Preussia and
Alternaria. Strains were grown in four different media in presence and absence of selected resins to
promote chemical diversity generation of new secondary metabolites. Fermentation extracts were
evaluated, looking for new antifungal activities against plant and human fungal pathogens, as well
as, cytotoxic activities against the human liver cancer cell line HepG2. From the 349 isolates tested,
126 (36%) exhibited significant bioactivities including 58 strains with exclusive antifungal properties
and 33 strains with exclusive activity against the HepG2 hepatocellular carcinoma cell line. After LCMS
analysis, 68 known bioactive secondary metabolites could be identified as produced by 96 strains,
and 12 likely unknown compounds were found in a subset of 14 fungal endophytes. The chemical
profiles of the differential expression of induced activities were compared. As proof of concept, ten
active secondary metabolites only produced in the presence of resins were purified and identified. The
structures of three of these compounds were new and herein are elucidated.This work was supported by Fundación MEDINA and the Andalusian Government grant
RNM-7987 ‘Sustainable use of plants and their fungal parasites from arid regions of Andalucía for new molecules
useful for antifungals and neuroprotectors’
- …
