2,621 research outputs found
A Levinson-Galerkin algorithm for regularized trigonometric approximation
Trigonometric polynomials are widely used for the approximation of a smooth
function from a set of nonuniformly spaced samples
. If the samples are perturbed by noise, controlling
the smoothness of the trigonometric approximation becomes an essential issue to
avoid overfitting and underfitting of the data. Using the polynomial degree as
regularization parameter we derive a multi-level algorithm that iteratively
adapts to the least squares solution of optimal smoothness. The proposed
algorithm computes the solution in at most operations (
being the polynomial degree of the approximation) by solving a family of nested
Toeplitz systems. It is shown how the presented method can be extended to
multivariate trigonometric approximation. We demonstrate the performance of the
algorithm by applying it in echocardiography to the recovery of the boundary of
the Left Ventricle
Measure What Should be Measured: Progress and Challenges in Compressive Sensing
Is compressive sensing overrated? Or can it live up to our expectations? What
will come after compressive sensing and sparsity? And what has Galileo Galilei
got to do with it? Compressive sensing has taken the signal processing
community by storm. A large corpus of research devoted to the theory and
numerics of compressive sensing has been published in the last few years.
Moreover, compressive sensing has inspired and initiated intriguing new
research directions, such as matrix completion. Potential new applications
emerge at a dazzling rate. Yet some important theoretical questions remain
open, and seemingly obvious applications keep escaping the grip of compressive
sensing. In this paper I discuss some of the recent progress in compressive
sensing and point out key challenges and opportunities as the area of
compressive sensing and sparse representations keeps evolving. I also attempt
to assess the long-term impact of compressive sensing
Almost Eigenvalues and Eigenvectors of Almost Mathieu Operators
The almost Mathieu operator is the discrete Schr\"odinger operator
on defined via
. We derive explicit estimates for the eigenvalues at the edge
of the spectrum of the finite-dimensional almost Mathieu operator. We
furthermore show that the (properly rescaled) -th Hermite function
is an approximate eigenvector of this operator, and that it satisfies the same
properties that characterize the true eigenvector associated to the -th
largest eigenvalue. Moreover, a properly translated and modulated version of
is also an approximate eigenvector of this operator, and it satisfies
the properties that characterize the true eigenvector associated to the -th
largest (in modulus) negative eigenvalue. The results hold at the edge of the
spectrum, for any choice of and under very mild conditions on
and . We also give precise estimates for the size of the "edge", and
extend some of our results to the infinite dimensional case. The ingredients
for our proofs comprise Taylor expansions, basic time-frequency analysis, Sturm
sequences, and perturbation theory for eigenvalues and eigenvectors. Numerical
simulations demonstrate the tight fit of the theoretical estimates
Performance Analysis of Spectral Clustering on Compressed, Incomplete and Inaccurate Measurements
Spectral clustering is one of the most widely used techniques for extracting
the underlying global structure of a data set. Compressed sensing and matrix
completion have emerged as prevailing methods for efficiently recovering sparse
and partially observed signals respectively. We combine the distance preserving
measurements of compressed sensing and matrix completion with the power of
robust spectral clustering. Our analysis provides rigorous bounds on how small
errors in the affinity matrix can affect the spectral coordinates and
clusterability. This work generalizes the current perturbation results of
two-class spectral clustering to incorporate multi-class clustering with k
eigenvectors. We thoroughly track how small perturbation from using compressed
sensing and matrix completion affect the affinity matrix and in succession the
spectral coordinates. These perturbation results for multi-class clustering
require an eigengap between the kth and (k+1)th eigenvalues of the affinity
matrix, which naturally occurs in data with k well-defined clusters. Our
theoretical guarantees are complemented with numerical results along with a
number of examples of the unsupervised organization and clustering of image
data
Regularized Gradient Descent: A Nonconvex Recipe for Fast Joint Blind Deconvolution and Demixing
We study the question of extracting a sequence of functions
from observing only the sum of
their convolutions, i.e., from . While convex optimization techniques
are able to solve this joint blind deconvolution-demixing problem provably and
robustly under certain conditions, for medium-size or large-size problems we
need computationally faster methods without sacrificing the benefits of
mathematical rigor that come with convex methods. In this paper, we present a
non-convex algorithm which guarantees exact recovery under conditions that are
competitive with convex optimization methods, with the additional advantage of
being computationally much more efficient. Our two-step algorithm converges to
the global minimum linearly and is also robust in the presence of additive
noise. While the derived performance bounds are suboptimal in terms of the
information-theoretic limit, numerical simulations show remarkable performance
even if the number of measurements is close to the number of degrees of
freedom. We discuss an application of the proposed framework in wireless
communications in connection with the Internet-of-Things.Comment: Accepted to Information and Inference: a Journal of the IM
Inverse-Closedness of a Banach Algebra of Integral Operators on the Heisenberg Group
Let be the general, reduced Heisenberg group. Our main result
establishes the inverse-closedness of a class of integral operators acting on
, given by the off-diagonal decay of the kernel. As a
consequence of this result, we show that if , where
is the operator given by convolution with , , is
invertible in \B(L^{p}(\mathbb{H})), then
(\alpha_{1}I+S_{f})^{-1}=\alpha_{2}I+S_{g}g\in L^{1}_{v}(\mathbb{H})$.
We prove analogous results for twisted convolution operators and apply the
latter results to a class of Weyl pseudodifferential operators. We briefly
discuss relevance to mobile communications.Comment: This version corrects two mistakes and recognizes the work of other
authors related to a corollary of our main theore
Accurate detection of moving targets via random sensor arrays and Kerdock codes
The detection and parameter estimation of moving targets is one of the most
important tasks in radar. Arrays of randomly distributed antennas have been
popular for this purpose for about half a century. Yet, surprisingly little
rigorous mathematical theory exists for random arrays that addresses
fundamental question such as how many targets can be recovered, at what
resolution, at which noise level, and with which algorithm. In a different line
of research in radar, mathematicians and engineers have invested significant
effort into the design of radar transmission waveforms which satisfy various
desirable properties. In this paper we bring these two seemingly unrelated
areas together. Using tools from compressive sensing we derive a theoretical
framework for the recovery of targets in the azimuth-range-Doppler domain via
random antennas arrays. In one manifestation of our theory we use Kerdock codes
as transmission waveforms and exploit some of their peculiar properties in our
analysis. Our paper provides two main contributions: (i) We derive the first
rigorous mathematical theory for the detection of moving targets using random
sensor arrays. (ii) The transmitted waveforms satisfy a variety of properties
that are very desirable and important from a practical viewpoint. Thus our
approach does not just lead to useful theoretical insights, but is also of
practical importance. Various extensions of our results are derived and
numerical simulations confirming our theory are presented
- …
