162 research outputs found
Quantitation of Guggenheimella bovis and treponemes in bovine tissues related to digital dermatitis
Digital dermatitis is an inflammation of uncertain aetiology in the skin of the foot of cattle. In 2005, a novel microorganism, Guggenheimella bovis, was isolated from the advancing front of digital dermatitis lesions, suggesting a possible role in pathogenesis. In the present study, tissue samples of 20 affected cows were examined by quantitative PCR for G. bovis, treponemes and the total eubacterial load. High numbers of eubacteria and treponemes were found in most lesions, whereas only a few lesions contained Guggenheimella, and only at low concentrations. The results argue against the relevance of G. bovis in the aetiology of digital dermatitis in cattle, but are consistent with a role for treponeme
Search for composite and exotic fermions at LEP 2
A search for unstable heavy fermions with the DELPHI detector at LEP is
reported. Sequential and non-canonical leptons, as well as excited leptons and
quarks, are considered. The data analysed correspond to an integrated
luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV
and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172
GeV and 161 GeV. The search for pair-produced new leptons establishes 95%
confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2,
depending on the channel. The search for singly produced excited leptons and
quarks establishes upper limits on the ratio of the coupling of the excited
fermio
Microbial growth inhibition by oximes derived from natural volatile carbonyl compounds
Drug resistance rates in healthcare and community systems are induced by some bacterial and fungal pathogens. The answer to the challenge of antimicrobial resistance is searching for new alternatives to antibiotics. The aim of our work was to evaluate the antimicrobial activity of low-molecular oximes, which have not been extensively studied with regard to this issue. Fifty-three oximes were screened in vitro for their growth inhibitory activity against seven strains of microorganisms: Escherichia coli (ATCC 10536), Staphylococcus aureus (ATCC 6538), Enterococcus hirae (ATCC 10541), Pseudomonas aeruginosa (ATCC 15442), Legionella pneumophila (ATCC 33152), Aspergillus brasiliensis (ATCC 16404), and Candida albicans (ATCC 10231). The growth inhibition of microorganisms was tested using the paper disc diffusion method. Three antibiotics, netilmicin, fluconazole, and ofloxacin, were used as reference controls for the tested microorganisms. The oximes’ antimicrobial activity was evaluated by measuring the diameters of the inhibitory zones. Oximes of trans-cinnamaldehyde, propiophenone, (±)-citronellal, and piperitone showed strong antifungal activity, while the oximes of α-hexyl cinnamaldehyde, hydroxycinnamaldehyde, α-isomethyl ionone, pseudoionone, (-)-fenchone, and (+)-fenchone oximes showed strong antibacterial activity
Integration of the End Cap TEC+ of the CMS Silicon Strip Tracker
The silicon strip tracker of the CMS experiment has been completed and inserted into the CMS detector in late 2007. The largest sub-system of the tracker is its end cap system, comprising two large end caps (TEC) each containing 3200 silicon strip modules. To ease construction, the end caps feature a modular design: groups of about 20 silicon modules are placed on sub-assemblies called petals and these self-contained elements are then mounted into the TEC support structures. Each end cap consists of 144 petals, and the insertion of these petals into the end cap structure is referred to as TEC integration. The two end caps were integrated independently in Aachen (TEC+) and at CERN (TEC--). This note deals with the integration of TEC+, describing procedures for end cap integration and for quality control during testing of integrated sections of the end cap and presenting results from the testing
Search for lightest neutralino and stau pair production in light gravitino scenarios with stau NLSP
Promptly decaying lightest neutralinos and long-lived staus are searched for
in the context of light gravitino scenarios. It is assumed that the stau is the
next to lightest supersymmetric particle (NLSP) and that the lightest
neutralino is the next to NLSP (NNLSP). Data collected with the Delphi detector
at centre-of-mass energies from 161 to 183 \GeV are analysed. No evidence of
the production of these particles is found. Hence, lower mass limits for both
kinds of particles are set at 95% C.L.. The mass of gaugino-like neutralinos is
found to be greater than 71.5 GeV/c^2. In the search for long-lived stau,
masses less than 70.0 to 77.5 \GeVcc are excluded for gravitino masses from 10
to 150 \eVcc . Combining this search with the searches for stable heavy leptons
and Minimal Supersymmetric Standard Model staus a lower limit of 68.5 \GeVcc
may be set for the stau mas
Reception Test of Petals for the End Cap TEC+ of the CMS Silicon Strip Tracker
The silicon strip tracker of the CMS experiment has been completed and was inserted into the CMS detector in late 2007. The largest sub system of the tracker are its end caps, comprising two large end caps (TEC) each containing 3200 silicon strip modules. To ease construction, the end caps feature a modular design: groups of about 20 silicon modules are placed on sub-assemblies called petals and these self-contained elements are then mounted onto the TEC support structures. Each end cap consists of 144 such petals, which were built and fully qualified by several institutes across Europe. Fro
CMS physics technical design report : Addendum on high density QCD with heavy ions
Peer reviewe
The Swiss Primary Hypersomnolence and Narcolepsy Cohort study (SPHYNCS): Study protocol for a prospective, multicentre cohort observational study
Narcolepsy type 1 (NT1) is a disorder with well-established markers and a suspected autoimmune aetiology. Conversely, the narcoleptic borderland (NBL) disorders, including narcolepsy type 2, idiopathic hypersomnia, insufficient sleep syndrome and hypersomnia associated with a psychiatric disorder, lack well-defined markers and remain controversial in terms of aetiology, diagnosis and management. The Swiss Primary Hypersomnolence and Narcolepsy Cohort Study (SPHYNCS) is a comprehensive multicentre cohort study, which will investigate the clinical picture, pathophysiology and long-term course of NT1 and the NBL. The primary aim is to validate new and reappraise well-known markers for the characterization of the NBL, facilitating the diagnostic process. Seven Swiss sleep centres, belonging to the Swiss Narcolepsy Network (SNaNe), joined the study and will prospectively enrol over 500 patients with recent onset of excessive daytime sleepiness (EDS), hypersomnia or a suspected central disorder of hypersomnolence (CDH) during a 3-year recruitment phase. Healthy controls and patients with EDS due to severe sleep-disordered breathing, improving after therapy, will represent two control groups of over 50 patients each. Clinical and electrophysiological (polysomnography, multiple sleep latency test, maintenance of wakefulness test) information, and information on psychomotor vigilance and a sustained attention to response task, actigraphy and wearable devices (long-term monitoring), and responses to questionnaires will be collected at baseline and after 6, 12, 24 and 36 months. Potential disease markers will be searched for in blood, cerebrospinal fluid and stool. Analyses will include quantitative hypocretin measurements, proteomics/peptidomics, and immunological, genetic and microbiota studies. SPHYNCS will increase our understanding of CDH and the relationship between NT1 and the NBL. The identification of new disease markers is expected to lead to better and earlier diagnosis, better prognosis and personalized management of CDH
The Swiss Primary Hypersomnolence and Narcolepsy Cohort study (SPHYNCS): Study protocol for a prospective, multicentre cohort observational study.
Narcolepsy type 1 (NT1) is a disorder with well-established markers and a suspected autoimmune aetiology. Conversely, the narcoleptic borderland (NBL) disorders, including narcolepsy type 2, idiopathic hypersomnia, insufficient sleep syndrome and hypersomnia associated with a psychiatric disorder, lack well-defined markers and remain controversial in terms of aetiology, diagnosis and management. The Swiss Primary Hypersomnolence and Narcolepsy Cohort Study (SPHYNCS) is a comprehensive multicentre cohort study, which will investigate the clinical picture, pathophysiology and long-term course of NT1 and the NBL. The primary aim is to validate new and reappraise well-known markers for the characterization of the NBL, facilitating the diagnostic process. Seven Swiss sleep centres, belonging to the Swiss Narcolepsy Network (SNaNe), joined the study and will prospectively enrol over 500 patients with recent onset of excessive daytime sleepiness (EDS), hypersomnia or a suspected central disorder of hypersomnolence (CDH) during a 3-year recruitment phase. Healthy controls and patients with EDS due to severe sleep-disordered breathing, improving after therapy, will represent two control groups of over 50 patients each. Clinical and electrophysiological (polysomnography, multiple sleep latency test, maintenance of wakefulness test) information, and information on psychomotor vigilance and a sustained attention to response task, actigraphy and wearable devices (long-term monitoring), and responses to questionnaires will be collected at baseline and after 6, 12, 24 and 36 months. Potential disease markers will be searched for in blood, cerebrospinal fluid and stool. Analyses will include quantitative hypocretin measurements, proteomics/peptidomics, and immunological, genetic and microbiota studies. SPHYNCS will increase our understanding of CDH and the relationship between NT1 and the NBL. The identification of new disease markers is expected to lead to better and earlier diagnosis, better prognosis and personalized management of CDH
Synergies between interstellar dust and heliospheric science with an Interstellar Probe
We discuss the synergies between heliospheric and dust science, the open
science questions, the technological endeavors and programmatic aspects that
are important to maintain or develop in the decade to come. In particular, we
illustrate how we can use interstellar dust in the solar system as a tracer for
the (dynamic) heliosphere properties, and emphasize the fairly unexplored, but
potentially important science question of the role of cosmic dust in
heliospheric and astrospheric physics. We show that an Interstellar Probe
mission with a dedicated dust suite would bring unprecedented advances to
interstellar dust research, and can also contribute-through measuring dust - to
heliospheric science. This can, in particular, be done well if we work in
synergy with other missions inside the solar system, thereby using multiple
vantage points in space to measure the dust as it `rolls' into the heliosphere.
Such synergies between missions inside the solar system and far out are crucial
for disentangling the spatially and temporally varying dust flow. Finally, we
highlight the relevant instrumentation and its suitability for contributing to
finding answers to the research questions.Comment: 18 pages, 7 Figures, 5 Tables. Originally submitted as white paper
for the National Academies Decadal Survey for Solar and Space Physics
2024-203
- …
