351 research outputs found

    CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention

    Get PDF
    The DNA-binding protein CCCTC-binding factor (CTCF) and the cohesin complex function together to shape chromatin architecture in mammalian cells, but the molecular details of this process remain unclear. Here, we demonstrate that a 79-aa region within the CTCF N terminus is essential for cohesin positioning at CTCF binding sites and chromatin loop formation. However, the N terminus of CTCF fused to artificial zinc fingers was not sufficient to redirect cohesin to non-CTCF binding sites, indicating a lack of an autonomously functioning domain in CTCF responsible for cohesin positioning. BORIS (CTCFL), a germline-specific paralog of CTCF, was unable to anchor cohesin to CTCF DNA binding sites. Furthermore, CTCF-BORIS chimeric constructs provided evidence that, besides the N terminus of CTCF, the first two CTCF zinc fingers, and likely the 3D geometry of CTCF-DNA complexes, are also involved in cohesin retention. Based on this knowledge, we were able to convert BORIS into CTCF with respect to cohesin positioning, thus providing additional molecular details of the ability of CTCF to retain cohesin. Taken together, our data provide insight into the process by which DNA-bound CTCF constrains cohesin movement to shape spatiotemporal genome organization

    Comparative analyses of CTCF and BORIS occupancies uncover two distinct classes of CTCF binding genomic regions.

    Get PDF
    BackgroundCTCF and BORIS (CTCFL), two paralogous mammalian proteins sharing nearly identical DNA binding domains, are thought to function in a mutually exclusive manner in DNA binding and transcriptional regulation.ResultsHere we show that these two proteins co-occupy a specific subset of regulatory elements consisting of clustered CTCF binding motifs (termed 2xCTSes). BORIS occupancy at 2xCTSes is largely invariant in BORIS-positive cancer cells, with the genomic pattern recapitulating the germline-specific BORIS binding to chromatin. In contrast to the single-motif CTCF target sites (1xCTSes), the 2xCTS elements are preferentially found at active promoters and enhancers, both in cancer and germ cells. 2xCTSes are also enriched in genomic regions that escape histone to protamine replacement in human and mouse sperm. Depletion of the BORIS gene leads to altered transcription of a large number of genes and the differentiation of K562 cells, while the ectopic expression of this CTCF paralog leads to specific changes in transcription in MCF7 cells.ConclusionsWe discover two functionally and structurally different classes of CTCF binding regions, 2xCTSes and 1xCTSes, revealed by their predisposition to bind BORIS. We propose that 2xCTSes play key roles in the transcriptional program of cancer and germ cells

    Dosage compensation: X-repress yourself

    Get PDF
    AbstractDosage compensation in Caenorhabditis elegans involves the sex-specific recruitment to the X chromosome of a protein complex, the nature of which suggests that there are mechanistic links between chromosome segregation and global transcriptional regulation

    One-hit wonders of genomic instability

    Get PDF
    Recent data show that cells from many cancers exhibit massive chromosome instability. The traditional view is that the gradual accumulation of mutations in genes involved in transcriptional regulation and cell cycle controls results in tumor development. This, however, does not exclude the possibility that some mutations could be more potent than others in destabilizing the genome by targeting both chromosomal integrity and corresponding checkpoint mechanisms simultaneously. Three such examples of "single-hit" lesions potentially leading to heritable genome destabilization are discussed. They include: failure to release sister chromatid cohesion due to the incomplete proteolytic cleavage of cohesin; massive merotelic kinetochore misattachments upon condensin depletion; and chromosome under-replication. In all three cases, cells fail to detect potential chromosomal bridges before anaphase entry, indicating that there is a basic cell cycle requirement to maintain a degree of sister chromatid bridging that is not recognizable as chromosomal damage

    DNA repair, DNA replication and human disorders: A personal journey

    Get PDF
    I was born in 1946 and grew up in the industrial north-west of England close to the city of Manchester. My parents were German- Jewish refugees, who left Germany fairly early, in 1933. My father helped to establish and was one of the directors of a tannery, which made leather for shoes and handbags. This was part of a group of tanneries established first in Strasbourg by my great-grandfather Ferdinand Oppenheimer. I would describe my childhood and adolescent years as comfortable by general post-war standards. I went to a state primary school and obtained a scholarship to Manchester Grammar School (MGS), a fairly prestigious secondary school. As a child I was always interested in chemistry but had little interest in or knowledge of biology. The educational system in the UK at that time was such that one had to specialise very early and as a consequence I have had no formal biology education since the age of 12, something I have managed to hide reasonably successfully for the rest of my life! In my final two years at MGS I studied just physics, chemistry and mathematics and obtained a scholarship to Pembroke College, Cambridge (England) to study Natural Sciences, with the intention of becoming a chemist. In the second year at Cambridge, one of the options was a course on biochemistry. Having no real idea what this was, I read a book about it in the summer of 1965, and was truly astonished and excited to discover that the basis of life was just a bunch of rather complicated organic chemistry reactions. So I took the biochemistry course in my second year. By the end of that year, I was fed up with chemistry and for my final year I chose to do biochemistry rather than chemistry, a decision I have not regretted. The biochemistry lectures must have been pretty up-to-date, as we were told briefly about the discovery of DNA repair by Dick Setlow [1], a topic that seemed rather esoteric at the time

    Contrasting roles of condensin I and condensin II in mitotic chromosome formation

    Get PDF
    © 2012. Published by The Company of Biologists LtdIn vertebrates, two condensin complexes exist, condensin I and condensin II, which have differing but unresolved roles in organizing mitotic chromosomes. To dissect accurately the role of each complex in mitosis, we have made and studied the first vertebrate conditional knockouts of the genes encoding condensin I subunit CAP-H and condensin II subunit CAP-D3 in chicken DT40 cells. Live-cell imaging reveals highly distinct segregation defects. CAP-D3 (condensin II) knockout results in masses of chromatin-containing anaphase bridges. CAP-H (condensin I)-knockout anaphases have a more subtle defect, with chromatids showing fine chromatin fibres that are associated with failure of cytokinesis and cell death. Super-resolution microscopy reveals that condensin-I-depleted mitotic chromosomes are wider and shorter, with a diffuse chromosome scaffold, whereas condensin-II-depleted chromosomes retain a more defined scaffold, with chromosomes more stretched and seemingly lacking in axial rigidity. We conclude that condensin II is required primarily to provide rigidity by establishing an initial chromosome axis around which condensin I can arrange loops of chromatin.This work was supported by an Australian Research Council discovery project [grant number DP110100784 to D.F.H., K.H.A.C. and W.C.E.]; National Health and Medical Research Council (NHMRC) project grants [APP1030358 and 546454]; an NHMRC RD Wright Fellowship to P.K.; an NHMRC Senior Research Fellowship to C.B.W.; an NHMRC Senior Principal Research Fellowship to K.H.A.C.; and by the Victorian Government’s Operational Infrastructure Support Progra

    Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα

    Get PDF
    © 2012 Samejima et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication dateMitotic chromosome formation involves a relatively minor condensation of the chromatin volume coupled with a dramatic reorganization into the characteristic "X" shape. Here we report results of a detailed morphological analysis, which revealed that chromokinesin KIF4 cooperated in a parallel pathway with condensin complexes to promote the lateral compaction of chromatid arms. In this analysis, KIF4 and condensin were mutually dependent for their dynamic localization on the chromatid axes. Depletion of either caused sister chromatids to expand and compromised the "intrinsic structure" of the chromosomes (defined in an in vitro assay), with loss of condensin showing stronger effects. Simultaneous depletion of KIF4 and condensin caused complete loss of chromosome morphology. In these experiments, topoisomerase IIα contributed to shaping mitotic chromosomes by promoting the shortening of the chromatid axes and apparently acting in opposition to the actions of KIF4 and condensins. These three proteins are major determinants in shaping the characteristic mitotic chromosome morphology

    Are SMC complexes loop extruding factors? Linking theory with fact

    Get PDF
    The extreme length of chromosomal DNA requires organizing mechanisms to both promote functional genetic interactions and ensure faithful chromosome segregation when cells divide. Microscopy and genome‐wide contact frequency analyses indicate that intra‐chromosomal looping of DNA is a primary pathway of chromosomal organization during all stages of the cell cycle. DNA loop extrusion has emerged as a unifying model for how chromosome loops are formed in cis in different genomic contexts and cell cycle stages. The highly conserved family of SMC complexes have been found to be required for DNA cis‐looping and have been suggested to be the enzymatic core of loop extruding machines. Here, the current body of evidence available for the in vivo and in vitro action of SMC complexes is discussed and compared to the predictions made by the loop extrusion model. How SMC complexes may differentially act on chromatin to generate DNA loops and how they could work to generate the dynamic and functionally appropriate organization of DNA in cells is explored

    CEP3 encodes a centromere protein of Saccharomyces cerevisiae.

    Full text link
    corecore