17 research outputs found

    Knitting for heart valve tissue engineering.

    Get PDF
    Knitting is a versatile technology which offers a large portfolio of products and solutions of interest in heart valve (HV) tissue engineering (TE). One of the main advantages of knitting is its ability to construct complex shapes and structures by precisely assembling the yarns in the desired position. With this in mind, knitting could be employed to construct a HV scaffold that closely resembles the authentic valve. This has the potential to reproduce the anisotropic structure that is characteristic of the heart valve with the yarns, in particular the 3-layered architecture of the leaflets. These yarns can provide oriented growth of cells lengthwise and consequently enable the deposition of extracellular matrix (ECM) proteins in an oriented manner. This technique, therefore, has a potential to provide a functional knitted scaffold, but to achieve that textile engineers need to gain a basic understanding of structural and mechanical aspects of the heart valve and in addition, tissue engineers must acquire the knowledge of tools and capacities that are essential in knitting technology. The aim of this review is to provide a platform to consolidate these two fields as well as to enable an efficient communication and cooperation among these two research areas

    The surface modification of ballistic textiles using plasma-assisted chemical vapor deposition (PACVD)

    Full text link
    This paper describes studies on the surface modification of so-called ballistic materials (materials commonly used to protect the human body against firearms, i.e. fragments or bullets). Two materials, an ultra-high molecular weight polyethylene (UHMWPE) composite and aramid fabric, were investigated. The surfaces of these fibrous materials were modified using plasma-assisted chemical vapor deposition (PACVD) to examine the effects of the modification on the material properties, which are important for designing ballistic protections. Accordingly, both the mechanical strength and water resistance of the modified materials were tested. The results clearly show the impact of the modification on both parameters. </jats:p
    corecore