677 research outputs found

    Perturbed angular correlations for Gd in gadolinium: in-beam comparisons of relative magnetizations

    Get PDF
    Perturbed angular correlations were measured for Gd ions implanted into gadolinium foils following Coulomb excitation with 40 MeV O-16 beams. A technique for measuring the relative magnetizations of ferromagnetic gadolinium hosts under in-beam conditions is described and discussed. The combined electric-quadrupole and magnetic-dipole interaction is evaluated. The effect of nuclei implanted onto damaged or non-substitutional sites is assessed, as is the effect of misalignment between the internal hyperfine field and the external polarizing field. Thermal effects due to beam heating are discussed.Comment: 37 pages, 15 figures, accepted for publication in NIM

    Consistent description of magnetic dipole properties in transitional nuclei

    Full text link
    It is shown that a consistent description of magnetic dipole properties in transitional nuclei can be obtained in the interacting boson model-2 by F-spin breaking mechanism, which is associated with differences between the proton and neutron deformations. In particular, the long standing anomalies observed in the gg-factors of the Os-Pt isotopes are resolved by a proper inclusion of F-spin breaking.Comment: Revtex, 10 pages, 4 figures (available from authors upon request

    Intermediate energy Coulomb excitation as a probe of nuclear structure at radioactive beam facilities

    Full text link
    The effects of retardation in the Coulomb excitation of radioactive nuclei in intermediate energy collisions (Elab ~100 MeV/nucleon) are investigated. We show that the excitation cross sections of low-lying states in 11Be, {38,40,42}S and {44,46}Ar projectiles incident on gold and lead targets are modified by as much as 20% due to these effects. The angular distributions of decaying gamma-rays are also appreciably modified.Comment: 21 pages, 3 figures, Phys. Rev. C, in pres

    Critical test of multi-{\it j} supersymmetries from magnetic moment measurements

    Get PDF
    Magnetic moment measurements in odd nuclei directly probe the distribution of fermion states and hence provide one of the most critical tests for multi-jj supersymmetries in collective nuclei. Due to complexity of calculations and lack of data, such tests have not been performed in the past. Using the Mathematica software, we derive analytic expressions for magnetic moments in the SO(BF)(6)×SU(F)(2)SO^{(BF)}(6) \times SU^{(F)}(2) limit of the U(6/12)U(6/12) supersymmetry and compare the results with recent measurements in 195^{195}Pt.Comment: 10 pages with 1 figur
    corecore