81 research outputs found

    Tio2-photocatalyzed water depollution, a strong, yet selective depollution method: New evidence from the solar light induced degradation of glucocorticoids in freshwaters

    Get PDF
    The photodegradation of the most prescribed glucocorticoids (GCs) was studied under relevant environmental conditions in the presence of suspended TiO2. The considered drugs in-cluded cortisone (CORT), hydrocortisone (HCORT), betamethasone (BETA), dexamethasone (DEXA), prednisone (PRED), prednisolone (PREDLO), and triamcinolone (TRIAM). The experiments were carried out at concentrations (50 µg L−1) close to the real ones in freshwater samples (tap and river) under simulated and natural sunlight, and their decomposition took place very efficiently under natural sunlight. The reactions were monitored by high-pressure liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). According to a pseudo-first-order decay, all drugs underwent degradation within 15 min, following different paths with respect to the direct photolysis. The observed kinetic constants, slightly lower in river than in tap water, varied from 0.29 to 0.61 min−1 with modest differences among GCs in the same matrix. Among main matrix macro-constituents, humic acids (HAs) were the most interfering species involved in GCs degradation. The photogenerated primary products were identified by HPLC-ESI-MS/MS, allowing to elucidate the general photochemical path of GCs. Finally, a comparison with literature data obtained using different advanced oxidation processes (AOPs) highlights the treatment efficiency with TiO2 /solar light for removing such persistent aquatic contaminants

    Modeling midbrain and brainstem neuromelanins to characterize metal binding and associated MRI contrast in Parkinson's and Alzheimer's diseases

    Get PDF
    Neuromelanin (NM) is a dark pigment that binds potentially toxic metal ions and is crucial for neuronal vulnerability. Magnetic resonance imaging (MRI) was proposed to measure neuromelanin in the substantia nigra or locus coeruleus, potentially providing a marker of Parkinson's disease. Here, synthetic neuromelanin analogues were prepared with iron and copper and used for characterization of metal binding and impact on proton relaxation, a prerequisite for optimizing neuromelanin-sensitive MRI. The results confirm the presence of paramagnetic mononuclear Fe(III) and antiferromagnetically coupled clusters, which enhance relaxation to variable degrees. Further complexity arises from Cu(II), which can compete for binding to mononuclear sites, aggregate in mixed-metal clusters, or bind to proteins associated with the melanin moiety. Unlike the strong relaxant Fe(III), Cu(II) only indirectly impacts relaxation by replacing iron. Overall, MRI primarily provides measures of average neuromelanin concentrations. Information on the distribution of neuromelanins with different metal compositions might be obtained with multiparametric MRI

    Occurrence, Distribution, and Ecological Risk of Fluoroquinolones in Rivers and Wastewaters

    Get PDF
    The use of fluoroquinolones for the treatment of infections in humans and animals has increased in Argentina, and they can be found in large amounts in water bodies. The present study investigated the occurrence and associated ecological risk of 5 fluoroquinolones in rivers and farm wastewaters of San Luis, Santa Fe, Córdoba, Entre Ríos, and Buenos Aires provinces of Argentina by high-performance liquid chromatography coupled to fast-scanning fluorescence detection and ultra–high-performance liquid chromatography coupled to triple quadrupole mass spectrometry detection. The maximum concentrations of ciprofloxacin, enrofloxacin, ofloxacin, enoxacin, and difloxacin found in wastewater were 1.14, 11.9, 1.78, 22.1, and 14.2 μg L–1, respectively. In the case of river samples, only enrofloxacin was found, at a concentration of 0.97 μg L–1. The individual risk of aquatic organisms associated with water pollution due to fluoroquinolones was higher in bacteria, cyanobacteria, algae, plants, and anurans than in crustaceae and fish, with, in some cases, risk quotients >1. The proportion of samples classified as high risk was 87.5% for ofloxacin, 63.5% for enrofloxacin, 57.1% for ciprofloxacin, and 25% for enoxacin. Our results suggest that the prevalence of fluoroquinolones in water could be potentially risky for the aquatic ecosystem, and harmful to biodiversity.Fil: Teglia, Carla Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; ArgentinaFil: Perez, Florencia Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; ArgentinaFil: Michlig, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Investigación y Análisis de Residuos y Contaminantes Químicos; ArgentinaFil: Repetti, María Rosa. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Investigación y Análisis de Residuos y Contaminantes Químicos; ArgentinaFil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; ArgentinaFil: Culzoni, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; Argentin

    Identification of metabolites and thermal transformation products of quinolones in raw cow milk by liquid chromatography coupled to high resolution mass spectrometry.

    Get PDF
    The presence of residues of antibiotics, metabolites, and thermal transformation products (TPs), produced during thermal treatment to eliminate pathogenic microorganisms in milk, could represent a risk for people. Cow"s milk samples spiked with enrofloxacin (ENR), ciprofloxacin (CIP), difloxacin (DIF), and sarafloxacin (SAR) and milk samples from cows medicated with ENR were submitted to several thermal treatments. The milk samples were analyzed by liquid chromatography-mass spectrometry (LC-MS) to find and identify TPs and metabolites. In this work, 27 TPs of 4 quinolones and 24 metabolites of ENR were found. Some of these compounds had been reported previously, but others were characterized for the first time, including lactose-conjugated CIP, the formamidation reaction for CIP and SAR, and hydroxylation or ketone formation to produce three different isomers for all quinolones studied

    Characterization of the sorption of uranium(VI) on different complexing resins

    No full text
    The sorption of uranium(VI) on two cationic resins containing different complexing groups, the iminodiacetic resin Chelex 100 and the weak carboxylic resin Amberlite CG-50, was investigated. The Gibbs–Donnan model was used to describe and to predict the sorption through the determination of the intrinsic complexation constants. These quantities, even though non-thermodynamic, characterize the sorption as being independent of experimental conditions. The sorption mechanism of the metal on the complexing resins was also studied by adding a competitive soluble ligand that shifts the sorption curves to higher pH values. The ligand competes with the resin for the complexation with the metal ion. Uranium is also strongly sorbed on Chelex 100 at very acid pH, through formation of two complexes in the resin phase: ML with logβ110i=–1.16, in more acidic solution, and ML2 with logβ120i=–5.72. Only the presence of the competitive ligand in solution makes the determination of the second complex possible. Also on Amberlite CG-50 the sorption is strong and involves the formation of the complex ML2, in more acidic solution, with logβ120i=–3.16. In the presence of the ligand EDTA, the complex ML2(OH)2 was characterized with logβ12–2i=–5.15. In all the experiments the hydrolysis reaction in the aqueous phase was quantitatively considered

    Separation of copper(II) and aluminium(III) from fresh waters by solid phase extraction on a complexing resin column

    No full text
    The solid-phase extraction (SPE) of copper(II) and aluminium(III) from fresh waters on an ion-exchange complexing resin containing iminodiacetic groups (Chelex 100) has been examined. Quantitative recovery of the metal ions was related to the breakthrough profile that, for some samples, could not be evaluated directly. A method is suggested for evaluation, instead, of the sorption curves, on the basis of passing different volumes of sample through the column. This enables evaluation of important properties, for instance the central point of the breakthrough curve, Vf. The column used was a small one, containing 0.10 g dry Chelex 100. The metal ion was eluted with a small volume of acid solution, 10 mL of 0.5 mol L– 1 HNO3; this resulted in good preconcentration factors. For copper(II) it was found that fresh waters of similar composition could have different Vf in the same column. This was ascribed to different reaction coefficients (aM(I)) of copper(II) in the considered samples, which affects Vf. By use of the proposed SPE procedure it is possible to evaluate the reaction coefficient of copper(II). The values of aM(I) for two different drinking waters at pH 7.7 were found to be 3.7061012 and less than 4.4061011. Similar results were obtained for aluminium(III)
    corecore