324 research outputs found

    Targeting of Rad51-dependent homologous recombination: implications for the radiation sensitivity of human lung cancer cell lines

    Get PDF
    The aim of the present work was to study the role of Rad51-dependent homologous recombination in the radiation response of non-small-cell lung cancer (NSCLC) cell lines. A dose- and time-dependent increase in the formation of Rad51 and γ-H2AX foci with a maximum at about 4 and 1 h after irradiation, followed by a decrease, has been found. The relative fraction of cells with persisting Rad51 foci was 20–30% in radioresistant and 60–80% in radiosensitive cell lines. In comparison, a higher fraction of residual Dsb was evident in cell lines with nonfunctional p53. Transfection with As-Rad51 significantly downregulates radiation-induced formation of Rad51 foci and increases apoptosis, but did not influence the rejoining of DNA double-strand breaks. Interestingly, wortmannin, a well-known inhibitor of nonhomologous end-joining, also inhibits Rad51 foci formation. In general, there was no correlation between the clonogenic survival at 2 Gy and the percentage of initial Rad51 or γ-H2AX foci after ionising radiation (IR). The most reliable predictive factor for radiosensitivity of NSCLC cell lines was the relative fraction of Rad51 foci remaining at 24 h after IR. Although most of the Rad51 foci are co-localised with γ-H2AX foci, no correlation of the relative fraction of persisting γ-H2AX foci and SF2 is evident

    Proteasome Inhibitors Block DNA Repair and Radiosensitize Non-Small Cell Lung Cancer

    Get PDF
    Despite optimal radiation therapy (RT), chemotherapy and/or surgery, a majority of patients with locally advanced non-small cell lung cancer (NSCLC) fail treatment. To identify novel gene targets for improved tumor control, we performed whole genome RNAi screens to identify knockdowns that most reproducibly increase NSCLC cytotoxicity. These screens identified several proteasome subunits among top hits, including the topmost hit PSMA1, a component of the core 20 S proteasome. Radiation and proteasome inhibition showed synergistic effects. Proteasome inhibition resulted in an 80–90% decrease in homologous recombination (HR), a 50% decrease in expression of NF-κB-inducible HR genes BRCA1 and FANCD2, and a reduction of BRCA1, FANCD2 and RAD51 ionizing radiation-induced foci. IκBα RNAi knockdown rescued NSCLC radioresistance. Irradiation of mice with NCI-H460 xenografts after inducible PSMA1 shRNA knockdown markedly increased murine survival compared to either treatment alone. Proteasome inhibition is a promising strategy for NSCLC radiosensitization via inhibition of NF-κB-mediated expression of Fanconi Anemia/HR DNA repair genes.American Society for Radiation Oncology (Junior Faculty Career Research Training Award)Harvard University. Joint Center for Radiation Therapy (Foundation Grant)Dana-Farber/Harvard Cancer Center (SPORE Developmental Research Project Award in Lung Cancer Research)National Cancer Institute (U.S.) (Award K08CA172354

    Prospective single-arm study of 72 Gy hyperfractionated radiation therapy and combination chemotherapy for anaplastic astrocytomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite intensive multimodal treatment, outcome of patients with malignant glioma remains poor, and a standard dose of radiotherapy for anaplastic astrocytoma has not been defined. In the past RTOG study (83-02), the arm of 72 Gy hyperfractionated radiotherapy (HFRT) for malignant gliomas showed better outcome than the arms of higher doses (76.8 – 81.6 Gy) and the arms of lower doses (48 – 54.4 Gy). The purpose of this study is to verify the efficacy of this protocol.</p> <p>Methods</p> <p>From July 1995, 44 consecutive eligible patients with histologically proven anaplastic astrocytoma were enrolled in this study (HFRT group). The standard regimen in this protocol was post-operative radiotherapy of 72 Gy in 60 fractions (1.2 Gy/fraction, 2 fractions/day) with concurrent chemotherapy (weekly ACNU). The primary endpoint was local control rate (LCR), and the secondary endpoints were overall survival (OS), progression-free survival (PFS) and late toxicity.</p> <p>Results</p> <p>Three-year OS of the HFRT group was 64.8% (95% confidence interval; 48.4–81.3%). Three-year PFS rate and LCR were 64.4% (95%CI: 48.4–80.3%) and 81.6% (95%CI: 69.2–94.8%), respectively.</p> <p>The number of failures at 5 years in the HFRT group were 14 (32%). The number of failures inside the irradiation field was only about half (50%) of all failures. One (2%) of the patients clinically diagnosed as brain necrosis due to radiation therapy.</p> <p>Conclusion</p> <p>The results of this study suggested that 72 Gy HFRT seemed to show favorable outcome for patients with anaplastic astrocytoma with tolerable toxicity.</p

    Prognostically orientated multimodality treatment including surgery for selected patients of small-cell lung cancer patients stages IB to IIIB: long-term results of a phase II trial

    Get PDF
    Following mediastinoscopy, a prognostically orientated multimodality approach was chosen in selected small-cell lung cancer (SCLC) patients with hyperfractionated accelerated chemoradiotherapy (Hf-RTx) and definitive surgery (S). Stage IB/IIA patients had four cycles of cisplatin/etoposide (PE) and surgery. Stage IIB/IIIA patients had three cycles PE followed by one cycle concurrent chemoradiation including Hf-RTx and surgery. Most stage IIIB patients were not planned for surgery and had CTx followed by sequential RTx or one cycle concurrent CTx/RTx. Of 46 consecutive patients (stage IB six, IIA two, IIB/IIIA 22, IIIB 16) 43 (94%) showed an objective response. Twenty-three of patients (72%) planned for inclusion of S were completely resected (R0) (IB 6/6, IIA 2/2, IIB/IIIA 13/22, IIIB 2/2). Overall toxicity was acceptable – one patient died of septicaemia, no perioperative deaths occurred. Median follow-up of patients alive (n = 21) is 52 months (30+ – 75+). Median survival and 5-year survival rate of all patients are 36 months and 46%, in R0 patients 68 months and 63% (R0-IIB/IIIA/IIIB: not yet reached and 67%). This multimodality treatment including surgery proved highly effective with 100% local control and remarkable long-term survival after complete resection, even in locally advanced SCLC stages IIB/IIIA patients. © 1999 Cancer Research Campaig

    A non-randomised, single-centre comparison of induction chemotherapy followed by radiochemotherapy versus concomitant chemotherapy with hyperfractionated radiotherapy in inoperable head and neck carcinomas

    Get PDF
    BACKGROUND: The application of induction chemotherapy failed to provide a consistent benefit for local control in primary treatment of advanced head and neck (H&N) cancers. The aim of this study was to compare the results of concomitant application of radiochemotherapy for treating locally advanced head-and-neck carcinoma in comparison with the former standard of sequential radiochemotherapy. METHODS: Between 1987 and 1995 we treated 122 patients with unresectable (stage IV head and neck) cancer by two different protocols. The sequential protocol (SEQ; 1987–1992) started with two courses of neoadjuvant chemotherapy (cisplatin [CDDP] + 120-h continuous infusions (c.i.) of folinic acid [FA] and 5-fluorouracil [5-FU]), followed by a course of radiochemotherapy using conventional fractionation up to 70 Gy. The concomitant protocol (CON; since 1993) combined two courses of FA/5-FU c.i. plus mitomycin (MMC) concomitantly with a course of radiotherapy up to 30 Gy in conventional fractionation, followed by a hyperfractionated course up to 72 Gy. Results from the two groups were compared. RESULTS: Patient and tumor characteristics were balanced (SEQ = 70, CON = 52 pts.). Mean radiation dose achieved (65.3 Gy vs. 71.6 Gy, p = 0.00), response rates (67 vs. 90 % for primary, p = 0.02), and local control (LC; 17.6% vs. 41%, p = 0.03), were significantly lower in the SEQ group, revealing a trend towards lower disease-specific (DSS; 19.8% vs. 31.4%, p = 0.08) and overall (14.7% vs. 23.7%, p = 0.11) survival rates after 5 years. Mucositis grades III and IV prevailed in the CON group (54% versus 44%). Late toxicity was similar in both groups. CONCLUSION: Concurrent chemotherapy seemed more effective in treating head and neck tumors than induction chemotherapy followed by chemoradiation, resulting in better local control and a trend towards improved survival

    Treatment of limited stage follicular lymphoma with Rituximab immunotherapy and involved field radiotherapy in a prospective multicenter Phase II trial-MIR trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The optimal treatment of early stage follicular Lymphoma is a matter of debate. Radiation therapy has frequently been applied with a curative approach beside watchful waiting. Involved field, extended field and total nodal radiation techniques are used in various protocols, but the optimal radiation field still has to be defined. Follicular lymphoma is characterized by stable expression of the CD20 antigen on the tumour cells surface. The anti CD20 antibody Rituximab (Mabthera<sup>®</sup>) has shown to be effective in systemic therapy of FL in primary treatment, relapse and maintenance therapy.</p> <p>Methods/design</p> <p>The MIR (Mabthera<sup>® </sup>and Involved field Radiation) study is a prospective multicenter trial combining systemic treatment with the anti CD20 antibody Rituximab (Mabthera<sup>®</sup>) in combination with involved field radiotherapy (30 - 40 Gy). This trial aims at testing the combination's efficacy and safety with an accrual of 85 patients.</p> <p>Primary endpoint of the study is progression free survival. Secondary endpoints are response rate to Rituximab, complete remission rate at week 18, relapse rate, relapse pattern, relapse free survival, overall survival, toxicity and quality of life.</p> <p>Discussion</p> <p>The trial evaluates the efficacy of Rituximab to prevent out-filed recurrences in early stage nodal follicular lymphoma and the safety of the combination of Rituximab and involved field radiotherapy. It also might show additional risk factors for a later recurrence (e.g. remission state after Rituximab only).</p> <p>Trial Registration</p> <p>ClinicalTrials (NCT): <a href="http://www.clinicaltrials.gov/ct2/show/NCT00509184">NCT00509184</a></p
    corecore