132 research outputs found

    Bezlotoxumab for the prevention of Clostridium difficile recurrence

    Get PDF
    Abstract: Introduction: Clostridium difficile infection is a major economic and clinical burden, due to its high frequency of recurrence. Currently recommended treatments are not efficient for prevention and may contribute to the risk of recurrent infection. In recent years, research has focused on strategies to lessen this risk. Bezlotoxumab is a monoclonal antibody that prevents recurrences of C. difficile infection through the antagonism of toxin B. Areas covered: In this review, the authors discuss the burden of C. difficile infection and its recurrences, the mechanisms underlying the recurrences, and current C. difficile treatments. They subsequently analyze the strategic therapeutic rationale for bezlotoxumab use, as well as the supporting clinical evidence. Expert opinion: Bezlotoxumab is an attractive solution for reducing the unacceptable level of recur- rence that occurs with the currently recommended C. difficile treatments and other alternative therapies under consideration. Even though bezlotoxumab has not been tested in large-scale trials exclusively in cases of already established recurrent C.difficile infection (rCDI), it has an advantage over current treatments in that it does not interfere with the patient’s gut flora while directly neutralizing the key virulence factor. Although cost remains an important factor against its widespread use, simpler admin- istration, fewer side-effects, and better social acceptability justify its consideration for treating rCDI

    SOCS1 expression in cancer cells: potential roles in promoting antitumor immunity

    Get PDF
    Suppressor of cytokine signaling 1 (SOCS1) is a potent regulator immune cell responses and a proven tumor suppressor. Inhibition of SOCS1 in T cells can boost antitumor immunity, whereas its loss in tumor cells increases tumor aggressivity. Investigations into the tumor suppression mechanisms so far focused on tumor cell-intrinsic functions of SOCS1. However, it is possible that SOCS1 expression in tumor cells also regulate antitumor immune responses in a cell-extrinsic manner via direct and indirect mechanisms. Here, we discuss the evidence supporting the latter, and its implications for antitumor immunity

    Profibrogenic role of IL-15 through IL-15 receptor alpha-mediated trans-presentation in the carbon tetrachloride-induced liver fibrosis model

    Get PDF
    BackgroundInflammatory cytokines play key pathogenic roles in liver fibrosis. IL-15 is a proinflammatory cytokine produced by myeloid cells. IL-15 promotes pathogenesis of several chronic inflammatory diseases. However, increased liver fibrosis has been reported in mice lacking IL-15 receptor alpha chain (IL-15Rα), suggesting an anti-fibrogenic role for IL-15. As myeloid cells are key players in liver fibrosis and IL-15 signaling can occur independently of IL-15Rα, we investigated the requirement of IL-15 and IL-15Rα in liver fibrosis.MethodsWe induced liver fibrosis in Il15–/–, Il15ra–/– and wildtype C57BL/6 mice by the administration of carbon tetrachloride (CCl4). Liver fibrosis was evaluated by Sirius red and Mason’s trichrome staining and α-smooth muscle acting immunostaining of myofibroblasts. Gene expression of collagens, matrix modifying enzymes, cytokines and chemokines was quantified by RT-qPCR. The phenotype and the numbers of intrahepatic lymphoid and myeloid cell subsets were evaluated by flow cytometry.ResultsBoth Il15–/– and Il15ra–/– mice developed markedly reduced liver fibrosis compared to wildtype control mice, as revealed by reduced collagen deposition and myofibroblast content. Il15ra–/– mice showed further reduction in collagen deposition compared to Il15–/– mice. However, Col1a1 and Col1a3 genes were similarly induced in the fibrotic livers of wildtype, Il15–/– and Il15ra–/– mice, although notable variations were observed in the expression of matrix remodeling enzymes and chemokines. As expected, Il15–/– and Il15ra–/– mice showed markedly reduced numbers of NK cells compared to wildtype mice. They also showed markedly less staining of CD45+ immune cells and CD68+ macrophages, and significantly reduced inflammatory cell infiltration into the liver, with fewer pro-inflammatory and anti-inflammatory monocyte subsets compared to wildtype mice.ConclusionOur findings indicate that IL-15 exerts its profibrogenic role in the liver by promoting macrophage activation and that this requires trans-presentation of IL-15 by IL-15Rα

    The nod-like receptor, Nlrp12, plays an anti-inflammatory role in experimental autoimmune encephalomyelitis

    Full text link
    BACKGROUND: Multiple sclerosis (MS) is an organ-specific autoimmune disease resulting in demyelinating plaques throughout the central nervous system. In MS, the exact role of microglia remains unknown. On one hand, they can present antigens, skew T cell responses, and upregulate the expression of pro-inflammatory molecules. On the other hand, microglia may express anti-inflammatory molecules and inhibit inflammation. Microglia express a wide variety of immune receptors such as nod-like receptors (NLRs). NLRs are intracellular receptors capable of regulating both innate and adaptive immune responses. Among NLRs, Nlrp12 is largely expressed in cells of myeloid origins. It plays a role in immune inflammatory responses by negatively regulating the nuclear factor-kappa B (NF-κB) pathway. Thus, we hypothesize that Nlrp12 suppresses inflammation and ameliorates the course of MS. METHODS: We used experimental autoimmune encephalomyelitis (EAE), a well-characterized mouse model of MS. EAE was induced in wild-type (WT) and Nlrp12(−/−) mice with myelin oligodendrocyte glycoprotein (MOG):complete Freud’s adjuvant (CFA). The spinal cords of healthy and immunized mice were extracted for immunofluorescence and pro-inflammatory gene analysis. Primary murine cortical microglia cell cultures of WT and Nlrp12(−/−) were prepared with cortices of 1-day-old pups. The cells were stimulated with lipopolysaccharide (LPS) and analyzed for the expression of pro-inflammatory genes as well as pro-inflammatory molecule secretions. RESULTS: Over the course of 9 weeks, the Nlrp12(−/−) mice demonstrated increased severity in the disease state, where they developed the disease earlier and reached significantly higher clinical scores compared to the WT mice. The spinal cords of immunized WT mice relative to healthy WT mice revealed a significant increase in Nlrp12 messenger ribonucleic acid (mRNA) expression at 1, 3, and 5 weeks post injection. A significant increase in the expression of pro-inflammatory genes Ccr5, Cox2, and IL-1β was found in the spinal cords of the Nlrp12(−/−) mice relative to the WT mice (P < 0.05). A significant increase in the level of gliosis was observed in the spinal cords of the Nlrp12(−/−) mice compared to the WT mice after 9 weeks of disease (P < 0.05). Primary Nlrp12(−/−) microglia cells demonstrated a significant increase in inducible nitric oxide synthase (iNOS) expression (P < 0.05) and secreted significantly (P < 0.05) more tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), and nitric oxide (NO). CONCLUSION: Nlrp12 plays a protective role by suppressing inflammation during the development of EAE. The absence of Nlrp12 results in an increased inflammatory response

    SARS-CoV-2 spike antigen-specific B cell and antibody responses in pre-vaccination period COVID-19 convalescent males and females with or without post-covid condition

    Get PDF
    Background Following SARS-CoV-2 infection a significant proportion of convalescent individuals develop the post-COVID condition (PCC) that is characterized by wide spectrum of symptoms encompassing various organs. Even though the underlying pathophysiology of PCC is not known, detection of viral transcripts and antigens in tissues other than lungs raise the possibility that PCC may be a consequence of aberrant immune response to the viral antigens. To test this hypothesis, we evaluated B cell and antibody responses to the SARS-CoV-2 antigens in PCC patients who experienced mild COVID-19 disease during the pre-vaccination period of COVID-19 pandemic. Methods The study subjects included unvaccinated male and female subjects who developed PCC or not (No-PCC) after clearing RT-PCR confirmed mild COVID-19 infection. SARS-CoV-2 D614G and omicron RBD specific B cell subsets in peripheral circulation were assessed by flow cytometry. IgG, IgG3 and IgA antibody titers toward RBD, spike and nucleocapsid antigens in the plasma were evaluated by ELISA. Results The frequency of the B cells specific to D614G-RBD were comparable in convalescent groups with and without PCC in both males and females. Notably, in females with PCC, the anti-D614G RBD specific double negative (IgD-CD27-) B cells showed significant correlation with the number of symptoms at acute of infection. Anti-spike antibody responses were also higher at 3 months post-infection in females who developed PCC, but not in the male PCC group. On the other hand, the male PCC group also showed consistently high anti-RBD IgG responses compared to all other groups. Conclusions The antibody responses to the spike protein, but not the anti-RBD B cell responses diverge between convalescent males and females who develop PCC. Our findings also suggest that sex-related factors may also be involved in the development of PCC via modulating antibody responses to the SARS-CoV-2 antigens

    SARS-CoV-2 spike antigen-specific B cell and antibody responses in pre-vaccination period COVID-19 convalescent males and females with or without post-covid condition

    Get PDF
    BackgroundFollowing SARS-CoV-2 infection a significant proportion of convalescent individuals develop the post-COVID condition (PCC) that is characterized by wide spectrum of symptoms encompassing various organs. Even though the underlying pathophysiology of PCC is not known, detection of viral transcripts and antigens in tissues other than lungs raise the possibility that PCC may be a consequence of aberrant immune response to the viral antigens. To test this hypothesis, we evaluated B cell and antibody responses to the SARS-CoV-2 antigens in PCC patients who experienced mild COVID-19 disease during the pre-vaccination period of COVID-19 pandemic.MethodsThe study subjects included unvaccinated male and female subjects who developed PCC or not (No-PCC) after clearing RT-PCR confirmed mild COVID-19 infection. SARS-CoV-2 D614G and omicron RBD specific B cell subsets in peripheral circulation were assessed by flow cytometry. IgG, IgG3 and IgA antibody titers toward RBD, spike and nucleocapsid antigens in the plasma were evaluated by ELISA.ResultsThe frequency of the B cells specific to D614G-RBD were comparable in convalescent groups with and without PCC in both males and females. Notably, in females with PCC, the anti-D614G RBD specific double negative (IgD-CD27-) B cells showed significant correlation with the number of symptoms at acute of infection. Anti-spike antibody responses were also higher at 3 months post-infection in females who developed PCC, but not in the male PCC group. On the other hand, the male PCC group also showed consistently high anti-RBD IgG responses compared to all other groups.ConclusionsThe antibody responses to the spike protein, but not the anti-RBD B cell responses diverge between convalescent males and females who develop PCC. Our findings also suggest that sex-related factors may also be involved in the development of PCC via modulating antibody responses to the SARS-CoV-2 antigens

    Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane

    No full text
    Sphingolipid microdomains are thought to result from the organization of plasma membrane sphingolipids and cholesterol into a liquid ordered phase, wherein the glycosylphosphatidylinositol (GPI)-anchored proteins are enriched. These domains, resistant to extraction by cold Triton X-100, can be isolated as buoyant membrane complexes (detergent-resistant membranes) in isopycnic density gradients. Here the effects of methyl-beta-cyclodextrin (MBCD), a specific cholesterol-binding agent that neither binds nor inserts into the plasma membrane, were investigated on the sphingolipid microdomains of lymphocytes. MBCD released substantial quantities of GPI-anchored Thy-1 and glycosphingolipid GM1, and also other surface proteins including CD45, and intracellular Lck and Fyn kinases. From endothelial cells, MBCD released GPI-anchored CD59, and CD44, but only a negligible amount of caveolin. Most MBCD-released Thy-1 and CD59 were not sedimentable and thus differed from Thy-1 released by membrane-active cholesterol-binding agents such as saponin and streptolysin O, or Triton X-100. Unlike that released by Triton X-100, only part of the Thy-1 molecules released by MBCD was buoyant in density gradients and co-isolated with GM1. Finally, treatment of Triton X-100-isolated detergent-resistant membranes with MBCD extracted most of the cholesterol without affecting the buoyant properties of Thy-1 or GM1. We suggest that (1) MBCD preferentially extracts cholesterol from outside, rather than within the sphingolipid microdomains and (2) this partly solubilizes GPI-anchored and transmembrane proteins from the glycerophospholipid-rich membrane and releases sphingolipid microdomains in both vesicular and non-vesicular form
    corecore