133 research outputs found
Interval Bound Propagation\unicode{x2013}aided Few\unicode{x002d}shot Learning
Few-shot learning aims to transfer the knowledge acquired from training on a
diverse set of tasks, from a given task distribution, to generalize to unseen
tasks, from the same distribution, with a limited amount of labeled data. The
underlying requirement for effective few-shot generalization is to learn a good
representation of the task manifold. One way to encourage this is to preserve
local neighborhoods in the feature space learned by the few-shot learner. To
this end, we introduce the notion of interval bounds from the provably robust
training literature to few-shot learning. The interval bounds are used to
characterize neighborhoods around the training tasks. These neighborhoods can
then be preserved by minimizing the distance between a task and its respective
bounds. We further introduce a novel strategy to artificially form new tasks
for training by interpolating between the available tasks and their respective
interval bounds, to aid in cases with a scarcity of tasks. We apply our
framework to both model-agnostic meta-learning as well as prototype-based
metric-learning paradigms. The efficacy of our proposed approach is evident
from the improved performance on several datasets from diverse domains in
comparison to a sizable number of recent competitors
Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.)
Dehydration or water-deficit is one of the most important environmental stress factors that greatly influences plant growth and development and limits crop productivity. Plants respond and adapt to such stress by altering their cellular metabolism and activating various defense machineries. Mechanisms that operate signal perception, transduction, and downstream regulatory events provide valuable information about the underlying pathways involved in environmental stress responses. The nuclear proteins constitute a highly organized, complex network that plays diverse roles during cellular development and other physiological processes. To gain a better understanding of dehydration response in plants, we have developed a comparative nuclear proteome in a food legume, chickpea (Cicer arietinum L.). Three-week-old chickpea seedlings were subjected to progressive dehydration by withdrawing water and the changes in the nuclear proteome were examined using two-dimensional gel electrophoresis. Approximately 205 protein spots were found to be differentially regulated under dehydration. Mass spectrometry analysis allowed the identification of 147 differentially expressed proteins, presumably involved in a variety of functions including gene transcription and replication, molecular chaperones, cell signaling, and chromatin remodeling. The dehydration responsive nuclear proteome of chickpea revealed a coordinated response, which involves both the regulatory as well as the functional proteins. This study, for the first time, provides an insight into the complex metabolic network operating in the nucleus during dehydration
Plant pre-mRNA splicing in fission yeast, Schizosaccharomyces pombe
Pre-mRNA splicing or the removal of introns from precursor messenger RNAs depends on the accurate recognition of intron sequences by the splicing machinery. We have analyzed various aspects of intron sequence and structure in relation to splice site selection and splicing efficiency of a plant gene AmA1 in Schizosaccharomyces pombe. Earlier, we reported the cloning of AmA1, a seed albumin gene from Amaranthus hypochondriacus [A. Raina, A. Datta, Proc. Natl. Acad. Sci. USA 89 (1992) 11774]. In the absence of an in vitro splicing system for plants, the expression of AmA1 genomic clone in S. pombe has been used to analyze splicing of intron constructs. We aim to focus on S. pombe as a possible alternative and examined its effectiveness as a host for plant gene splicing. The results show here that pre-mRNA transcripts of AmA1 gene underwent splicing in S. pombe
Comparative analyses of nuclear proteome: extending its function
Organeller proteomics is an emerging technology that is critical in determining the cellular signal transduction pathways. Nucleus, the regulatory hub of the eukaryotic cell is a dynamic system and a repository of various macromolecules that serve as modulators of such signaling that dictate cell fate decisions. Nuclear proteins (NPs) are predicted to comprise about 10–20% of the total cellular proteins, suggesting the involvement of the nucleus in a number of diverse functions. Indeed, NPs constitute a highly organized but complex network that plays diverse roles during development and physiological processes. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating NP synthesis, their action and function. Proteomic study hold promise to understand the molecular basis of nuclear function using an unbiased comparative and differential approach. We identified a few hundred proteins that include classical and non-canonical nuclear components presumably associated with variety of cellular functions impinging on the complexity of nuclear proteome. Here, we review the nuclear proteome based on our own findings, available literature, and databases focusing on detailed comparative analysis of NPs and their functions in order to understand how plant nucleus works. The review also shed light on the current status of plant nuclear proteome and discusses the future prospect
Comparative Analyses of Extracellular Matrix Proteome: An Under-Explored Area in Plant Research
Expression of a fungal sterol desaturase improves tomato drought tolerance, pathogen resistance and nutritional quality
Crop genetic engineering mostly aims at improving environmental stress (biotic and abiotic) tolerance as well as nutritional quality. Empowering a single crop with multiple traits is highly demanding and requires manipulation of more than one gene. However, we report improved drought tolerance and fungal resistance along with the increased iron and polyunsaturated fatty acid content in tomato by expressing a single gene encoding C-5 sterol desaturase (FvC5SD) from an edible fungus Flammulina velutipes. FvC5SD is an iron binding protein involved in ergosterol biosynthesis. Morphological and biochemical analyses indicated ≈23% more epicuticular wax deposition in leaves of transgenic plants that provides an effective waterproof barrier resulting in improved protection from drought and infection by phytopathogenic fungus Sclerotinia sclerotiorum. Furthermore, the transgenic fruits have improved nutritional value attributed to enhanced level of beneficial PUFA and 2-3 fold increase in total iron content. This strategy can be extended to other economically important crops
Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress
Water deficit or dehydration is the most crucial environmental factor that limits crop productivity and influences geographical distribution of many crop plants. It is suggested that dehydration-responsive changes in expression of proteins may lead to cellular adaptation against water deficit conditions. Most of the earlier understanding of dehydration-responsive cellular adaptation has evolved from transcriptome analyses. By contrast, comparative analysis of dehydration-responsive proteins, particularly proteins in the subcellular fraction, is limiting. In plants, cell wall or extracellular matrix (ECM) serves as the repository for most of the components of the cell signaling process and acts as a frontline defense. Thus, we have initiated a proteomics approach to identify dehydration-responsive ECM proteins in a food legume, chickpea. Several commercial chickpea varieties were screened for the status of dehydration tolerance using different physiological and biochemical indexes. Dehydration-responsive temporal changes of ECM proteins in JG-62, a relatively tolerant variety, revealed 186 proteins with variance at a 95% significance level statistically. The comparative proteomics analysis led to the identification of 134 differentially expressed proteins that include predicted and novel dehydration-responsive proteins. This study, for the first time, demonstrates that over a hundred ECM proteins, presumably involved in a variety of cellular functions, viz. cell wall modification, signal transduction, metabolism, and cell defense and rescue, impinge on the molecular mechanism of dehydration tolerance in plants
- …
