7,895 research outputs found

    Red Giants in the Small Magellanic Cloud. II. Metallicity Gradient and Age-Metallicity Relation

    Full text link
    We present results from the largest CaII triplet line metallicity study of Small Magellanic Cloud (SMC) field red giant stars to date, involving 3037 objects spread across approximately 37.5 sq. deg., centred on this galaxy. We find a median metallicity of [Fe/H]=-0.99+/-0.01, with clear evidence for an abundance gradient of -0.075+/-0.011 dex / deg. over the inner 5 deg. We interpret the abundance gradient to be the result of an increasing fraction of young stars with decreasing galacto-centric radius, coupled with a uniform global age-metallicity relation. We also demonstrate that the age-metallicity relation for an intermediate age population located 10kpc in front of the NE of the Cloud is indistinguishable from that of the main body of the galaxy, supporting a prior conjecture that this is a stellar analogue of the Magellanic Bridge. The metal poor and metal rich quartiles of our RGB star sample (with complementary optical photometry from the Magellanic Clouds Photometric Survey) are predominantly older and younger than approximately 6Gyr, respectively. Consequently, we draw a link between a kinematical signature, tentatively associated by us with a disk-like structure, and the upsurges in stellar genesis imprinted on the star formation history of the central regions of the SMC. We conclude that the increase in the star formation rate around 5-6Gyr ago was most likely triggered by an interaction between the SMC and LMC.Comment: To appear in MNRA

    Red Giants in the Small Magellanic Cloud. I. Disk and Tidal Stream Kinematics

    Full text link
    We present results from an extensive spectroscopic survey of field stars in the Small Magellanic Cloud (SMC). 3037 sources, predominantly first-ascent red giants, spread across roughly 37.5 sq. deg, are analysed. The line of sight velocity field is dominated by the projection of the orbital motion of the SMC around the LMC/Milky Way. The residuals are inconsistent with both a non-rotating spheroid and a nearly face on disk system. The current sample and previous stellar and HI kinematics can be reconciled by rotating disk models with line of nodes position angle, theta, ~ 120-130 deg., moderate inclination (i ~ 25-70 deg.), and rotation curves rising at 20-40 km/s/kpc. The metal-poor stars exhibit a lower velocity gradient and higher velocity dispersion than the metal-rich stars. If our interpretation of the velocity patterns as bulk rotation is appropriate, then some revision to simulations of the SMC orbit is required since these are generally tuned to the SMC disk line-of-nodes lying in a NE-SW direction. Residuals show strong spatial structure indicative of non-circular motions that increase in importance with increasing distance from the SMC centre. Kinematic substructure in the north-west part of our survey area is associated with the tidal tail or Counter-Bridge predicted by simulations. Lower line-of-sight velocities towards the Wing and the larger velocities just beyond the SW end of the SMC Bar are probably associated with stellar components of the Magellanic Bridge and Counter-Bridge, respectively. Our results reinforce the notion that the intermediate-age stellar population of the SMC is subject to substantial stripping by external forces.Comment: To appear in MNRA

    Evidence of a mis-aligned secondary bar in the Large Magellanic Cloud

    Full text link
    Evidence of a mis-aligned secondary bar, within the primary bar of the Large Magellanic Cloud (LMC) is presented. The density distribution and the de-reddened mean magnitudes (I0I_0) of the red clump stars in the bar obtained from the OGLE II data are used for this study. The bar region which predominantly showed wavy pattern in the line of sight in \citet{a03} was located. These points in the X-Z plane delineate an S-shaped pattern, clearly indicating a mis-aligned bar. This feature is statistically significant and does not depend on the considered value of I0I_0 for the LMC center. The rest of the bar region were not found to show the warp or the wavy pattern. The secondary bar is found to be considerably elongated in the Z-direction, with an inclination of 66o^o.5 ±\pm 0o^o.9, whereas the undisturbed part of the primary bar is found to have an inclination of 15o^o.1 ±\pm 2o^o.7, such that the eastern sides are closer to us with respect to the western sides of both the bars. The PAmaj_{maj} of the secondary bar is found to be 108o^o.4 ±\pm 7o^o.3. The streaming motions found in the H I velocity map close to the LMC center could be caused by the secondary bar. The recent star formation and the gas distribution in LMC could be driven by the mis-aligned secondary bar.Comment: 10 pages, to appear in ApJ Letter

    Comparison of CFD and DSMC Using Calibrated Transport Parameters

    Get PDF
    Hypersonic re-entry flows span a wide range of length scales where regions of both rarefied and continuum flow exist. Traditional computational fluid dynamics (CFD) techniques do not provide an accurate solution for the rarefied regions of such mixed flow fields. Although direct simulation Monte Carlo (DSMC) can be used to accurately capture both the continuum and rarefied features of mixed flow fields, they are computationally expensive when employed to simulate the low Knudsen number continuum regimes. Thus, a hybrid framework for seamlessly combining the two methodologies, CFD and DSMC, continues to be a topic of significant research effort. Ensuring consistency in the reaction kinetics and transport models employed within CFD and DSMC is a crucial requirement for obtaining a reliable solution from a hybrid framework for combined continuum/rarefied high speed flows. This paper represents one of the first studies to utilize the calibrated transport parameters developed to ensure consistency between CFD and DSMC solvers. The new variable soft sphere (VSS) parameters are compared to both previous standard variable hard sphere (VHS) parameters and also to solutions from the CFD transport properties that the new parameters were developed to reproduce

    Photometric metallicity map of the Large Magellanic Cloud

    Full text link
    We have estimated a metallicity map of the Large Magellanic Cloud (LMC) using the Magellanic Cloud Photometric Survey (MCPS) and Optical Gravitational Lensing Experiment (OGLE III) photometric data. This is a first of its kind map of metallicity up to a radius of 4 - 5 degrees, derived using photometric data and calibrated using spectroscopic data of Red Giant Branch (RGB) stars. We identify the RGB in the V, (V-I) colour magnitude diagrams of small subregions of varying sizes in both data sets. We use the slope of the RGB as an indicator of the average metallicity of a subregion, and calibrate the RGB slope to metallicity using spectroscopic data for field and cluster red giants in selected subregions. The average metallicity of the LMC is found to be [Fe/H] = -0.37 dex (σ\sigma[Fe/H] = 0.12) from MCPS data, and [Fe/H] = -0.39 dex (σ\sigma[Fe/H] = 0.10) from OGLE III data. The bar is found be the most metal-rich region of the LMC. Both the data sets suggest a shallow radial metallicity gradient up to a radius of 4 kpc (-0.049±\pm0.002 dex kpc1^{-1} to -0.066±\pm0.006 dex kpc1^{-1}). Subregions in which the mean metallicity differs from the surrounding areas do not appear to correlate with previously known features; spectroscopic studies are required in order to assess their physical significance.Comment: 28 pages, 40 figures, 7 tables, Accepted for publication in MNRAS. arXiv admin note: text overlap with arXiv:1101.1771, arXiv:1302.6211 by other author

    Nurses' knowledge, attitude, practice and barriers towards the use of evidence based nursing practice (EBNP) at government Hospital in Malaysia

    Get PDF
    In the nursing profession, EBNP makes a positive contribution to healthcare outcomes, care delivery, clinical teaching and research. The research objective was to determine the nurses’ knowledge, attitude, practice of EBNP and barriers to adopt EBNP in four hospitals in Malaysia, Hospital Universiti Sains Malaysia (Hospital USM), Hospital Pulau Pinang (HPP), Hospital Sultan Abdul Halim (HSAH) and Hospital Seberang Jaya (HSJ). A cross-sectional study was conducted from January until December 2012 among nurses working in all disciplines, on shift or day time duties in four selected hospitals. The questionnaire was adapted from a Singapore study. The data were analysed with SPSS version 21.0, using descriptive statistics, Independent T-Test, One- Way ANOVA and Multi-Factorial ANOVA. Results showed that among the nurses working in four different Malaysian hospitals, nearly 50% knew what the evidence based practice meant. The items assessing the attitude showed a large number nurses responding that they did neither agree nor disagree with statements provided. The majority of the remaining nurses tended to show a rather positive attitude except when asked about how the workload interfered with their EBP practice. Most nurses recognized there were many barriers to EBP in their working place. The significant mean differences of practice on EBNP between senior and junior nurses were observed for the statements 1, 2, and 3 (p=<0.001), (p=0.005) and (p=0.028) respectively. Multifactorial ANOVA analysis used to determine the effect of academic qualification, working place, working experience and training on nurses’ knowledge towards EBNP. In conclusion, this study may have helped to increase understanding of knowledge, attitudes, practice and barriers to adopt EBNP to the utilization of research by nurses through an exploration of perceived barriers and facilitators on the part of nurses

    Multifractality and Conformal Invariance at 2D Metal-Insulator Transition in the Spin-Orbit Symmetry Class

    Full text link
    We study the multifractality (MF) of critical wave functions at boundaries and corners at the metal-insulator transition (MIT) for noninteracting electrons in the two-dimensional (2D) spin-orbit (symplectic) universality class. We find that the MF exponents near a boundary are different from those in the bulk. The exponents at a corner are found to be directly related to those at a straight boundary through a relation arising from conformal invariance. This provides direct numerical evidence for conformal invariance at the 2D spin-orbit MIT. The presence of boundaries modifies the MF of the whole sample even in the thermodynamic limit.Comment: 5 pages, 4 figure
    corecore