306 research outputs found

    New Embedded Representations and Evaluation Protocols for Inferring Transitive Relations

    Full text link
    Beyond word embeddings, continuous representations of knowledge graph (KG) components, such as entities, types and relations, are widely used for entity mention disambiguation, relation inference and deep question answering. Great strides have been made in modeling general, asymmetric or antisymmetric KG relations using Gaussian, holographic, and complex embeddings. None of these directly enforce transitivity inherent in the is-instance-of and is-subtype-of relations. A recent proposal, called order embedding (OE), demands that the vector representing a subtype elementwise dominates the vector representing a supertype. However, the manner in which such constraints are asserted and evaluated have some limitations. In this short research note, we make three contributions specific to representing and inferring transitive relations. First, we propose and justify a significant improvement to the OE loss objective. Second, we propose a new representation of types as hyper-rectangular regions, that generalize and improve on OE. Third, we show that some current protocols to evaluate transitive relation inference can be misleading, and offer a sound alternative. Rather than use black-box deep learning modules off-the-shelf, we develop our training networks using elementary geometric considerations.Comment: Accepted at SIGIR 201

    Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning

    Full text link
    A lot of the recent success in natural language processing (NLP) has been driven by distributed vector representations of words trained on large amounts of text in an unsupervised manner. These representations are typically used as general purpose features for words across a range of NLP problems. However, extending this success to learning representations of sequences of words, such as sentences, remains an open problem. Recent work has explored unsupervised as well as supervised learning techniques with different training objectives to learn general purpose fixed-length sentence representations. In this work, we present a simple, effective multi-task learning framework for sentence representations that combines the inductive biases of diverse training objectives in a single model. We train this model on several data sources with multiple training objectives on over 100 million sentences. Extensive experiments demonstrate that sharing a single recurrent sentence encoder across weakly related tasks leads to consistent improvements over previous methods. We present substantial improvements in the context of transfer learning and low-resource settings using our learned general-purpose representations.Comment: Accepted at ICLR 201

    Adversarial Generation of Natural Language

    Full text link
    Generative Adversarial Networks (GANs) have gathered a lot of attention from the computer vision community, yielding impressive results for image generation. Advances in the adversarial generation of natural language from noise however are not commensurate with the progress made in generating images, and still lag far behind likelihood based methods. In this paper, we take a step towards generating natural language with a GAN objective alone. We introduce a simple baseline that addresses the discrete output space problem without relying on gradient estimators and show that it is able to achieve state-of-the-art results on a Chinese poem generation dataset. We present quantitative results on generating sentences from context-free and probabilistic context-free grammars, and qualitative language modeling results. A conditional version is also described that can generate sequences conditioned on sentence characteristics.Comment: 11 pages, 3 figures, 5 table

    Deep Complex Networks

    Full text link
    At present, the vast majority of building blocks, techniques, and architectures for deep learning are based on real-valued operations and representations. However, recent work on recurrent neural networks and older fundamental theoretical analysis suggests that complex numbers could have a richer representational capacity and could also facilitate noise-robust memory retrieval mechanisms. Despite their attractive properties and potential for opening up entirely new neural architectures, complex-valued deep neural networks have been marginalized due to the absence of the building blocks required to design such models. In this work, we provide the key atomic components for complex-valued deep neural networks and apply them to convolutional feed-forward networks and convolutional LSTMs. More precisely, we rely on complex convolutions and present algorithms for complex batch-normalization, complex weight initialization strategies for complex-valued neural nets and we use them in experiments with end-to-end training schemes. We demonstrate that such complex-valued models are competitive with their real-valued counterparts. We test deep complex models on several computer vision tasks, on music transcription using the MusicNet dataset and on Speech Spectrum Prediction using the TIMIT dataset. We achieve state-of-the-art performance on these audio-related tasks
    corecore