251 research outputs found
Comparing the Overhead of Topological and Concatenated Quantum Error Correction
This work compares the overhead of quantum error correction with concatenated
and topological quantum error-correcting codes. To perform a numerical
analysis, we use the Quantum Resource Estimator Toolbox (QuRE) that we recently
developed. We use QuRE to estimate the number of qubits, quantum gates, and
amount of time needed to factor a 1024-bit number on several candidate quantum
technologies that differ in their clock speed and reliability. We make several
interesting observations. First, topological quantum error correction requires
fewer resources when physical gate error rates are high, white concatenated
codes have smaller overhead for physical gate error rates below approximately
10E-7. Consequently, we show that different error-correcting codes should be
chosen for two of the studied physical quantum technologies - ion traps and
superconducting qubits. Second, we observe that the composition of the
elementary gate types occurring in a typical logical circuit, a fault-tolerant
circuit protected by the surface code, and a fault-tolerant circuit protected
by a concatenated code all differ. This also suggests that choosing the most
appropriate error correction technique depends on the ability of the future
technology to perform specific gates efficiently
Blueprint for fault-tolerant quantum computation with Rydberg atoms
We present a blueprint for building a fault-tolerant universal quantum computer with Rydberg atoms. Our scheme, which is based on the surface code, uses individually addressable, optically trapped atoms as qubits and exploits electromagnetically induced transparency to perform the multiqubit gates required for error correction and computation. We discuss the advantages and challenges of using Rydberg atoms to build such a quantum computer, and we perform error correction simulations to obtain an error threshold for our scheme. Our findings suggest that Rydberg atoms are a promising candidate for quantum computation, but gate fidelities need to improve before fault-tolerant universal quantum computation can be achieved
Quantum Divide and Compute: Hardware Demonstrations and Noisy Simulations
Noisy, intermediate-scale quantum computers come with intrinsic limitations
in terms of the number of qubits (circuit "width") and decoherence time
(circuit "depth") they can have. Here, for the first time, we demonstrate a
recently introduced method that breaks a circuit into smaller subcircuits or
fragments, and thus makes it possible to run circuits that are either too wide
or too deep for a given quantum processor. We investigate the behavior of the
method on one of IBM's 20-qubit superconducting quantum processors with various
numbers of qubits and fragments. We build noise models that capture
decoherence, readout error, and gate imperfections for this particular
processor. We then carry out noisy simulations of the method in order to
account for the observed experimental results. We find an agreement within 20%
between the experimental and the simulated success probabilities, and we
observe that recombining noisy fragments yields overall results that can
outperform the results without fragmentation.Comment: Accepted in ISVLSI 202
Implementation of Provably Stable MaxNet
MaxNet TCP is a congestion control protocol that uses explicit multi-bit signalling from routers to achieve desirable properties such as high throughput and low latency. In this paper we present an implementation of an extended version of MaxNet. Our contributions are threefold. First, we extend the original algorithm to give both provable stability and rate fairness. Second, we introduce the MaxStart algorithm which allows new MaxNet connections to reach their fair rates quickly. Third, we provide a Linux kernel implementation of the protocol. With no overhead but 24-bit price signals, our implementation scales from 32 bit/s to 1 peta-bit/s with a 0.001% rate accuracy. We confirm the theoretically predicted properties by performing a range of experiments at speeds up to 1 Gbit/sec and delays up to 180 ms on the WAN-in-Lab facility
Universal topological phase of 2D stabilizer codes
Two topological phases are equivalent if they are connected by a local
unitary transformation. In this sense, classifying topological phases amounts
to classifying long-range entanglement patterns. We show that all 2D
topological stabilizer codes are equivalent to several copies of one universal
phase: Kitaev's topological code. Error correction benefits from the
corresponding local mappings.Comment: 4 pages, 3 figure
Evaluation of captured flow data of suspicious devices
Tato práce se zaměřuje na analýzu síťového provozu klientů komunikujících s adresami na veřejných blacklistech. Hlavním cílem bylo rozlišit atributy provozu, které mohou být použity k rozeznání bežného provozu od provozu nakažených zařízení. Výsledkem práce je modul Evaluator pro systém NEMEA, který rozšiřuje existujicí sadu modulů blacklistfilter. Evaluator počítá statistiky provozu podezřelých adres a využívá námi získané výsledky k omezení počtu false positive hlášení.This thesis focuses on the analysis of traffic generated by clients communicating with addresses on public blacklists. The main goal was to identify traffic attributes which could be used to differentiate the malicious traffic from benign traffic. The result of this work is a module for the NEMEA system---Evaluator. The module extends the functionality of existing module set blacklistfilter. Evaluator is designed to determine statistics of suspicious traffic and uses results of our measurements to reduce the number of false positive alerts
Generalized Toric Codes Coupled to Thermal Baths
We have studied the dynamics of a generalized toric code based on qudits at
finite temperature by finding the master equation coupling the code's degrees
of freedom to a thermal bath. As a consequence, we find that for qutrits new
types of anyons and thermal processes appear that are forbidden for qubits.
These include creation, annihilation and diffusion throughout the system code.
It is possible to solve the master equation in a short-time regime and find
expressions for the decay rates as a function of the dimension of the
qudits. Although we provide an explicit proof that the system relax to the
Gibbs state for arbitrary qudits, we also prove that above a certain crossing
temperature, qutrits initial decay rate is smaller than the original case for
qubits. Surprisingly this behavior only happens with qutrits and not with other
qudits with .Comment: Revtex4 file, color figures. New Journal of Physics' versio
- …
