5,521 research outputs found
Recommended from our members
Survey of unified approaches to integrated-service networks
The increasing demand for communication services, coupled with recent technological advances in communication media and switching techniques, has resulted in a proliferation of new and expanded services. Currently, networks are needed which can transmit voice, data, and video services in an application-independent fashion. Unified approaches employ a single switching technique across the entire network bandwidth, thus, allowing services to be switched in an application-independent manner. This paper presents a taxonomy of integrated-service networks including a look at N-ISDN, while focusing on unified approaches to integrated-service networks.The two most promising unified approaches are burst and fast packet switching. Burst switching is a circuit switching-based approach which allocates channel bandwidth to a connection only during the transmission of "bursts" of information. Fast packet switching is a packet switching-based approach which can be characterized by very high transmission rates on network links and simple, hardwired protocols which match the rapid channel speed of the network. Both approaches are being proposed as possible implementations for integrated-service networks. We survey these two approaches, and also examine the key performance issues found in fast packet switching. We then present the results of a simulation study of a fast packet switching network
Dependence of the Sr-to-Ba and Sr-to-Eu Ratio on the Nuclear Equation of State in Metal Poor Halo Stars
A model is proposed in which the light r-process element enrichment in
metal-poor stars is explained via enrichment from a truncated r-process, or
"tr-process." The truncation of the r-process from a generic core-collapse
event followed by a collapse into an accretion-induced black hole is examined
in the framework of a galactic chemical evolution model. The constraints on
this model imposed by observations of extremely metal-poor stars are explained,
and the upper limits in the [Sr/Ba] distributions are found to be related to
the nuclear equation of state in a collapse scenario. The scatter in [Sr/Ba]
and [Sr/Eu] as a function of metallicity has been found to be consistent with
turbulent ejection in core collapse supernovae. Adaptations of this model are
evaluated to account for the scatter in isotopic observables. This is done by
assuming mixing in ejecta in a supernova event.Comment: 15 pages, 12 figures; To appear in Ap
Recommended from our members
Packetized-voice/data integrated transmission on a token passing ring local area network
This paper investigates the performance of a token passing ring network with packetized-voice/data mixed traffic through extensive simulations. Both data and voice users are modeled in the simulations. Data users produce bursty traffic. Voice traffic is modeled as having alternating talkspurts and silences, with generation of voice packets at a constant rate during talkspurts and no packet generation during silence periods.The network performance measures obtained include: the distribution of transmission delays for voice packets, the average transmission delay and loss probabilities for voice packets, the number of voice users allowed on a network while satisfying the real-time constraints of speech, and the average transmission delay for data packets.Token passing ring local area networks are shown to effectively handle both voice and data traffic. The effects of system parameters (e.g., voice packet length, talkspurt/silence lengths, data traffic intensity, and limited versus exhaustive service disciplines) on network performance are discussed
The origin of HE0107-5240 and the production of O and Na in extremely metal-poor stars
We elaborate the binary scenario for the origin of HE0107-5240, the most
metal-poor star yet observed ([Fe/H] = -5.3), using current knowledge of the
evolution of extremely metal-poor stars. From the observed C/N value, we
estimate the binary separation and period. Nucleosynthesis in a helium
convective zone into which hydrogen has been injected allows us to discuss the
origin of surface O and Na as well as the abundance distribution of s-process
elements. We can explain the observed abundances of 12C, 13C, N, O, and Na and
predict future observations to validate the Pop III nature of HE0107-5240.Comment: 4 pages, 3 figures, proceedings of the conference, "Nuclei in the
Cosmos VIII", Nuclear Physics A in pres
Carbon burning in intermediate mass primordial stars
The evolution of a zero metallicity 9 M_s star is computed, analyzed and
compared with that of a solar metallicity star of identical ZAMS mass. Our
computations range from the main sequence until the formation of a massive
oxygen-neon white dwarf. Special attention has been payed to carbon burning in
conditions of partial degeneracy as well as to the subsequent thermally pulsing
Super-AGB phase. The latter develops in a fashion very similar to that of a
solar metallicity 9 M_s star, as a consequence of the significant enrichment in
metals of the stellar envelope that ensues due to the so-called third dredge-up
episode. The abundances in mass of the main isotopes in the final ONe core
resulting from the evolution are X(^{16}O) approx 0.59, X(^{20}Ne) approx 0.28
and X(^{24}Mg) approx 0.05. This core is surrounded by a 0.05 M_s buffer mainly
composed of carbon and oxygen, and on top of it a He envelope of mass 10^{-4}
M_sComment: 11 pages, 11 figures, accepted for publication in A&
Evolution of Low- and Intermediate-Mass Stars with [Fe/H] <= -2.5
We present extensive sets of stellar models for 0.8-9.0Msun in mass and -5 <=
[Fe/H] <= -2 and Z = 0 in metallicity. The present work focuses on the
evolutionary characteristics of hydrogen mixing into the He-flash convective
zones during the core and shell He flashes which occurs for the models with
[Fe/H] <~ -2.5. Evolution is followed from the zero age MS to the TPAGB phase
including the hydrogen engulfment by the He-flash convection during the RGB or
AGB phase. There exist various types of mixing episodes of how the H mixing
sets in and how it affects the final abundances at the surface. In particular,
we find H ingestion events without dredge-ups that enables repeated
neutron-capture nucleosynthesis in the He flash convective zones with 13
C(a,n)16 O as neutron source. For Z = 0, the mixing and dredge-up processes
vary with the initial mass, which results in different final abundances in the
surface. We investigate the occurrence of these events for various initial mass
and metallicity to find the metallicity dependence for the He-flash driven deep
mixing (He-FDDM) and also for the third dredge-up (TDU) events. In our models,
we find He-FDDM for M <= 3Msun for Z = 0 and for M <~ 2Msun for -5 <~ [Fe/H] <~
-3. On the other hand, the occurrence of the TDU is limited to the mass range
of ~1.5Msun to ~5Msun for [Fe/H] = -3, which narrows with decreasing
metallicity. The paper also discusses the implications of the results of model
computations for observations. We compared the abundance pattern of CNO
abundances with observed metal-poor stars. The origins of most iron-deficient
stars are discussed by assuming that these stars are affected by binary mass
transfer. We also point out the existence of a blue horizontal branch for -4 <~
[Fe/H] <~ -2.5.Comment: 19 pages, 12 figures, accepted by MNRA
Coronal propagation of solar flare particles observed by satellite
Propagation of solar flare particles in corona was studied using the satellite data at the geostationary orbit. by selecting very fast rise time events only, the interplanetary propagation were assumed to be scatter free arrival. The results show that the propagation in corona does not depend on particle energy in 4 to 500 MeV protons, and the time delays from optical flare do not depend on the distance between the flare site and the base of the interplanetary magnetic field which connects to the Earth
Si/Ge hole-tunneling double-barrier resonant tunneling diodes formed on sputtered flat Ge layers
We have demonstrated Si/Ge hole-tunneling double-barrier resonant tunneling diodes (RTDs) formed on flat Ge layers with a relaxation rate of 89% by our proposed method; in this method, the flat Ge layers can be directly formed on highly B-doped Si(001) substrates using our proposed sputter epitaxy method. The RTDs exhibit clear negative differential resistance effects in the static current–voltage (I–V) curves at room temperature. The quantized energy level estimation suggests that resonance peaks that appeared in the I–V curves are attributed to hole tunneling through the first heavy- and light-hole energy levels
Impacts of reduction of deep levels and surface passivation on carrier lifetimes in p-type 4H-SiC epilayers
Impacts of reduction of deep levels and surface passivation on carrier lifetimes in p-type 4H-SiC epilayers are investigated. The authors reported that the carrier lifetime in n-type epilayers increased by reduction of deep levels through thermal oxidation and thermal annealing. However, the carrier lifetimes in p-type epilayers were not significantly enhanced. In this study, in order to investigate the influence of surface passivation on the carrier lifetimes, the epilayer surface was passivated by different oxidation techniques. While the improvement of the carrier lifetime in n-type epilayers was small, the carrier lifetime in p-type epilayers were remarkably improved by appropriate surface passivation. For instance, the carrier lifetime was improved from 1.4 μs to 2.6 μs by passivation with deposited SiO2 annealed in NO. From these results, it was revealed that surface recombination is a limiting factor of carrier lifetimes in p-type 4H-SiC epilayers
- …
