2,324 research outputs found
Ramsey graphs induce subgraphs of quadratically many sizes
An n-vertex graph is called C-Ramsey if it has no clique or independent set
of size C log n. All known constructions of Ramsey graphs involve randomness in
an essential way, and there is an ongoing line of research towards showing that
in fact all Ramsey graphs must obey certain "richness" properties
characteristic of random graphs. Motivated by an old problem of Erd\H{o}s and
McKay, recently Narayanan, Sahasrabudhe and Tomon conjectured that for any
fixed C, every n-vertex C-Ramsey graph induces subgraphs of
different sizes. In this paper we prove this conjecture
Density theorems for bipartite graphs and related Ramsey-type results
In this paper, we present several density-type theorems which show how to
find a copy of a sparse bipartite graph in a graph of positive density. Our
results imply several new bounds for classical problems in graph Ramsey theory
and improve and generalize earlier results of various researchers. The proofs
combine probabilistic arguments with some combinatorial ideas. In addition,
these techniques can be used to study properties of graphs with a forbidden
induced subgraph, edge intersection patterns in topological graphs, and to
obtain several other Ramsey-type statements
Minors in expanding graphs
Extending several previous results we obtained nearly tight estimates on the
maximum size of a clique-minor in various classes of expanding graphs. These
results can be used to show that graphs without short cycles and other H-free
graphs contain large clique-minors, resolving some open questions in this area
- …
