2,324 research outputs found

    Ramsey graphs induce subgraphs of quadratically many sizes

    Full text link
    An n-vertex graph is called C-Ramsey if it has no clique or independent set of size C log n. All known constructions of Ramsey graphs involve randomness in an essential way, and there is an ongoing line of research towards showing that in fact all Ramsey graphs must obey certain "richness" properties characteristic of random graphs. Motivated by an old problem of Erd\H{o}s and McKay, recently Narayanan, Sahasrabudhe and Tomon conjectured that for any fixed C, every n-vertex C-Ramsey graph induces subgraphs of Θ(n2)\Theta(n^2) different sizes. In this paper we prove this conjecture

    Density theorems for bipartite graphs and related Ramsey-type results

    Full text link
    In this paper, we present several density-type theorems which show how to find a copy of a sparse bipartite graph in a graph of positive density. Our results imply several new bounds for classical problems in graph Ramsey theory and improve and generalize earlier results of various researchers. The proofs combine probabilistic arguments with some combinatorial ideas. In addition, these techniques can be used to study properties of graphs with a forbidden induced subgraph, edge intersection patterns in topological graphs, and to obtain several other Ramsey-type statements

    Minors in expanding graphs

    Full text link
    Extending several previous results we obtained nearly tight estimates on the maximum size of a clique-minor in various classes of expanding graphs. These results can be used to show that graphs without short cycles and other H-free graphs contain large clique-minors, resolving some open questions in this area
    corecore