4,879 research outputs found
Relations Between Quantum Maps and Quantum States
The relation between completely positive maps and compound states is
investigated in terms of the notion of quantum conditional probability
Lie algebraic noncommuting structures from reparametrisation symmetry
We extend our earlier work of revealing both space-space and space-time
noncommuting structures in various models in particle mechanics exhibiting
reparametrisation symmetry. We show explicitly (in contrast to the earlier
results in our paper \cite{sg}) that for some special choices of the
reparametrisation parameter , one can obtain space-space noncommuting
structures which are Lie-algebraic in form even in the case of the relativistic
free particle. The connection of these structures with the existing models in
the literature is also briefly discussed. Further, there exists some values of
for which the noncommutativity in the space-space sector can be made
to vanish. As a matter of internal consistency of our approach, we also study
the angular momentum algebra in details.Comment: 9 pages Latex, some references adde
One qubit almost completely reveals the dynamics of two
From the time dependence of states of one of them, the dynamics of two
interacting qubits is determined to be one of two possibilities that differ
only by a change of signs of parameters in the Hamiltonian. The only exception
is a simple particular case where several parameters in the Hamiltonian are
zero and one of the remaining nonzero parameters has no effect on the time
dependence of states of the one qubit. The mean values that describe the
initial state of the other qubit and of the correlations between the two qubits
also are generally determined to within a change of signs by the time
dependence of states of the one qubit, but with many more exceptions. An
example demonstrates all the results. Feedback in the equations of motion that
allows time dependence in a subsystem to determine the dynamics of the larger
system can occur in both classical and quantum mechanics. The role of quantum
mechanics here is just to identify qubits as the simplest objects to consider
and specify the form that equations of motion for two interacting qubits can
take.Comment: 6 pages with new and updated materia
Partial scaling transform of multiqubit states as a criterion of separability
The partial scaling transform of the density matrix for multiqubit states is
introduced to detect entanglement of quantum states. The transform contains
partial transposition as a special case. The scaling transform corresponds to
partial time scaling of subsystem (or partial Planck's constant scaling) which
was used to formulate recently separability criterion for continous variables.A
measure of entanglement which is a generalization of negativity measure is
introduced being based on tomographic probability description of spin states.Comment: 16 pages, 5 figures, submitted to J. Phys. A: Math. Ge
Unital Positive Maps and Quantum States
We analyze the structure of the subset of states generated by unital
completely positive quantum maps, A witness that certifies that a state does
not belong to the subset generated by a given map is constructed. We analyse
the representations of positive maps and their relation to quantum
Perron-Frobenius theory.Comment: 14 page
How state preparation can affect a quantum experiment: Quantum process tomography for open systems
We study the effects of preparation of input states in a quantum tomography
experiment. We show that maps arising from a quantum process tomography
experiment (called process maps) differ from the well know dynamical maps. The
difference between the two is due to the preparation procedure that is
necessary for any quantum experiment. We study two preparation procedures,
stochastic preparation and preparation by measurements. The stochastic
preparation procedure yields process maps that are linear, while the
preparations using von Neumann measurements lead to non-linear processes, and
can only be consistently described by a bi-linear process map. A new process
tomography recipe is derived for preparation by measurement for qubits. The
difference between the two methods is analyzed in terms of a quantum process
tomography experiment. A verification protocol is proposed to differentiate
between linear processes and bi-linear processes. We also emphasize the
preparation procedure will have a non-trivial effect for any quantum experiment
in which the system of interest interacts with its environment.Comment: 13 pages, no figures, submitted to Phys. Rev.
Minimal unitary representation of SU(2,2) and its deformations as massless conformal fields and their supersymmetric extensions
We study the minimal unitary representation (minrep) of SO(4,2) over an
Hilbert space of functions of three variables, obtained by quantizing its
quasiconformal action on a five dimensional space. The minrep of SO(4,2), which
coincides with the minrep of SU(2,2) similarly constructed, corresponds to a
massless conformal scalar in four spacetime dimensions. There exists a
one-parameter family of deformations of the minrep of SU(2,2). For positive
(negative) integer values of the deformation parameter \zeta one obtains
positive energy unitary irreducible representations corresponding to massless
conformal fields transforming in (0,\zeta/2) ((-\zeta/2,0)) representation of
the SL(2,C) subgroup. We construct the supersymmetric extensions of the minrep
of SU(2,2) and its deformations to those of SU(2,2|N). The minimal unitary
supermultiplet of SU(2,2|4), in the undeformed case, simply corresponds to the
massless N=4 Yang-Mills supermultiplet in four dimensions. For each given
non-zero integer value of \zeta, one obtains a unique supermultiplet of
massless conformal fields of higher spin. For SU(2,2|4) these supermultiplets
are simply the doubleton supermultiplets studied in arXiv:hep-th/9806042.Comment: Revised with an extended introduction and additional references.
Typos corrected. 49 pages; Latex fil
- …
