18 research outputs found

    Ocean Acidification-Induced Food Quality Deterioration Constrains Trophic Transfer

    Get PDF
    Our present understanding of ocean acidification (OA) impacts on marine organisms caused by rapidly rising atmospheric carbon dioxide (CO2) concentration is almost entirely limited to single species responses. OA consequences for food web interactions are, however, still unknown. Indirect OA effects can be expected for consumers by changing the nutritional quality of their prey. We used a laboratory experiment to test potential OA effects on algal fatty acid (FA) composition and resulting copepod growth. We show that elevated CO2 significantly changed the FA concentration and composition of the diatom Thalassiosira pseudonana, which constrained growth and reproduction of the copepod Acartia tonsa. A significant decline in both total FAs (28.1 to 17.4 fg cell−1) and the ratio of long-chain polyunsaturated to saturated fatty acids (PUFA:SFA) of food algae cultured under elevated (750 µatm) compared to present day (380 µatm) pCO2 was directly translated to copepods. The proportion of total essential FAs declined almost tenfold in copepods and the contribution of saturated fatty acids (SFAs) tripled at high CO2. This rapid and reversible CO2-dependent shift in FA concentration and composition caused a decrease in both copepod somatic growth and egg production from 34 to 5 eggs female−1 day−1. Because the diatom-copepod link supports some of the most productive ecosystems in the world, our study demonstrates that OA can have far-reaching consequences for ocean food webs by changing the nutritional quality of essential macromolecules in primary producers that cascade up the food web

    Zur Kenntniss der sudamerikanischen Cryptocephalen

    No full text
    Volume: 16Start Page: 1End Page: 48

    Synonymische Miscellaneen,

    No full text
    Volume: 37Start Page: 229End Page: 23

    Strong shift from HCO3- to CO2 uptake in Emiliania huxleyi with acidification: new approach unravels acclimation versus short-term pH effects

    Get PDF
    Effects of ocean acidification on Emiliania huxleyi strain RCC 1216 (calcifying, diploid life-cycle stage) and RCC 1217 (non-calcifying, haploid life-cycle stage) were investigated by measuring growth, elemental composition, and production rates under different pCO2 levels (380 and 950 μatm). In these differently acclimated cells, the photosynthetic carbon source was assessed by a 14C disequilibrium assay, conducted over a range of ecologically relevant pH values (7.9–8.7). In agreement with previous studies, we observed decreased calcification and stimulated biomass production in diploid cells under high pCO2, but no CO2-dependent changes in biomass production for haploid cells. In both life-cycle stages, the relative contributions of CO2 and HCO3 − uptake depended strongly on the assay pH. At pH values ≤ 8.1, cells preferentially used CO2 (≥ 90 % CO2), whereas at pH values ≥ 8.3, cells progressively increased the fraction of HCO3 − uptake (~45 % CO2 at pH 8.7 in diploid cells; ~55 % CO2 at pH 8.5 in haploid cells). In contrast to the short-term effect of the assay pH, the pCO2 acclimation history had no significant effect on the carbon uptake behavior. A numerical sensitivity study confirmed that the pH-modification in the 14C disequilibrium method yields reliable results, provided that model parameters (e.g., pH, temperature) are kept within typical measurement uncertainties. Our results demonstrate a high plasticity of E. huxleyi to rapidly adjust carbon acquisition to the external carbon supply and/or pH, and provide an explanation for the paradoxical observation of high CO2 sensitivity despite the apparently high HCO3 − usage seen in previous studies

    Rapid shifts in picoeukaryote community structure in response to ocean acidification

    No full text
    Rapid shifts in picoeukaryote community structure were observed during a CO2 perturbation experiment in which we followed the development of phytoplankton blooms in nutrient-amended mesocosms under present day or predicted future atmospheric pCO2 (750 μatm, seawater pH 7.8). Analysis of rbcL clone libraries (encoding the large subunit of RubisCO) and specific QPCR assays showed that two prasinophytes closely related to Micromonas pusilla and Bathycoccus prasinos were present but responded very differently to high CO2/acidification. We found that the abundance of Micromonas-like phylotypes was significantly higher (>20-fold) under elevated CO2/low pH, whereas the Bathycoccus-like phylotypes were more evenly distributed between treatments and dominated the prasinophyte community under ambient conditions. Rapid shifts in picoeukaryote community structure were observed during a CO2 perturbation experiment in which we followed the development of phytoplankton blooms in nutrient-amended mesocosms under present day or predicted future atmospheric pCO2 (750 μatm, seawater pH 7.8). Analysis of rbcL clone libraries (encoding the large subunit of RubisCO) and specific QPCR assays showed that two prasinophytes closely related to Micromonas pusilla and Bathycoccus prasinos were present but responded very differently to high CO2/acidification. We found that the abundance of Micromonas-like phylotypes was significantly higher (>20-fold) under elevated CO2/low pH, whereas the Bathycoccus-like phylotypes were more evenly distributed between treatments and dominated the prasinophyte community under ambient conditions
    corecore