13,875 research outputs found
Insulin-like growth factors and related proteins in plasma and cerebrospinal fluids of HIV-positive individuals.
BackgroundClinically significant dysregulation of the insulin-like growth factor (IGF) family proteins occurs in HIV-infected individuals, but the details including whether the deficiencies in IGFs contribute to CNS dysfunction are unknown.MethodsWe measured the levels of IGF1, IGF2, IGFBP1, IGFBP2, and IGF2 receptor (IGF2R) in matching plasma and cerebrospinal fluid (CSF) samples of 107 HIV+ individuals from CNS HIV Antiretroviral Therapy Effects Research (CHARTER) and analyzed their associations with demographic and disease characteristics, as well as levels of several soluble inflammatory mediators (TNFα, IL-6, IL-10, IL-17, IP-10, MCP-1, and progranulin). We also determined whether IGF1 or IGF2 deficiency is associated with HIV-associated neurocognitive disorder (HAND) and whether the levels of soluble IGF2R (an IGF scavenging receptor, which we also have found to be a cofactor for HIV infection in vitro) correlate with HIV viral load (VL).ResultsThere was a positive correlation between the levels of IGF-binding proteins (IGFBPs) and those of inflammatory mediators: between plasma IGFBP1 and IL-17 (β coefficient 0.28, P = 0.009), plasma IGFBP2 and IL-6 (β coefficient 0.209, P = 0.021), CSF IGFBP1 and TNFα (β coefficient 0.394, P < 0.001), and CSF IGFBP2 and TNF-α (β coefficient 0.14, P < 0.001). As IGFBPs limit IGF availability, these results suggest that inflammation is a significant factor that modulates IGF protein expression/availability in the setting of HIV infection. However, there was no significant association between HAND and the reduced levels of plasma IGF1, IGF2, or CSF IGF1, suggesting a limited power of our study. Interestingly, plasma IGF1 was significantly reduced in subjects on non-nucleoside reverse transcriptase inhibitor-based antiretroviral therapy (ART) compared to protease inhibitor-based therapy (174.1 ± 59.8 vs. 202.8 ± 47.3 ng/ml, P = 0.008), suggesting a scenario in which ART regimen-related toxicity can contribute to HAND. Plasma IGF2R levels were positively correlated with plasma VL (β coefficient 0.37, P = 0.021) and inversely correlated with current CD4+ T cell counts (β coefficient -0.04, P = 0.021), supporting our previous findings in vitro.ConclusionsTogether, these results strongly implicate (1) an inverse relationship between inflammation and IGF growth factor availability and the contribution of IGF deficiencies to HAND and (2) the role of IGF2R in HIV infection and as a surrogate biomarker for HIV VL
Correlation between fracture surface morphology and toughness in Zr-based bulk metallic glasses
Fracture surfaces of Zr-based bulk metallic glasses of various compositions tested in the as-cast and annealed conditions were analyzed using scanning electron microscopy. The tougher samples have shown highly jagged patterns at the beginning stage of crack propagation, and the length and roughness of this jagged pattern correlate well with the measured fracture toughness values. These jagged patterns, the main source of energy dissipation in the sample, are attributed to the formation of shear bands inside the sample. This observation provides strong evidence of significant “plastic zone” screening at the crack tip
Observation and interpretation of motional sideband asymmetry in a quantum electro-mechanical device
Quantum electro-mechanical systems offer a unique opportunity to probe
quantum noise properties in macroscopic devices, properties which ultimately
stem from the Heisenberg Uncertainty Principle. A simple example of this is
expected to occur in a microwave parametric transducer, where mechanical motion
generates motional sidebands corresponding to the up and down
frequency-conversion of microwave photons. Due to quantum vacuum noise, the
rates of these processes are expected to be unequal. We measure this
fundamental imbalance in a microwave transducer coupled to a radio-frequency
mechanical mode, cooled near the ground state of motion. We also discuss the
subtle origin of this imbalance: depending on the measurement scheme, the
imbalance is most naturally attributed to the quantum fluctuations of either
the mechanical mode or of the electromagnetic field
Recommended from our members
Chromatin remodeling protein HELLS is critical for retinoblastoma tumor initiation and progression.
Retinoblastoma is an aggressive childhood cancer of the developing retina that initiates by biallelic RB1 gene inactivation. Tumor progression in retinoblastoma is driven by epigenetics, as retinoblastoma genomes are stable, but the mechanism(s) that drive these epigenetic changes remain unknown. Lymphoid-specific helicase (HELLS) protein is an epigenetic modifier directly regulated by the RB/E2F pathway. In this study, we used novel genetically engineered mouse models to investigate the role of HELLS during retinal development and tumorigenesis. Our results indicate that Hells-null retinal progenitor cells divide, undergo cell-fate specification, and give rise to fully laminated retinae with minor bipolar cells defects, but normal retinal function. Despite the apparent nonessential role of HELLS in retinal development, failure to transcriptionally repress Hells during retinal terminal differentiation due to retinoblastoma (RB) family loss significantly contributes to retinal tumorigenesis. Loss of HELLS drastically reduced ectopic division of differentiating cells in Rb1/p107-null retinae, significantly decreased the incidence of retinoblastoma, delayed tumor progression, and increased overall survival. Despite its role in heterochromatin formation, we found no evidence that Hells loss directly affected chromatin accessibility in the retina but functioned as transcriptional co-activator of E2F3, decreasing expression of cell cycle genes. We propose that HELLS is a critical downstream mediator of E2F-dependent ectopic proliferation in RB-null retinae. Together with the nontoxic effect of HELLS loss in the developing retina, our results suggest that HELLS and its downstream pathways could serve as potential therapeutic targets for retinoblastoma
Recommended from our members
Complete response of skull base inverted papilloma to chemotherapy: Case report.
BackgroundInverted papilloma (IP) is the most common benign sinonasal neoplasm. Endoscopic techniques, improved understanding of pathophysiology, and novel surgical approaches have allowed rhinologists to treat IPs more effectively, with surgery being the mainstay of therapy. Frontal sinus IP poses a challenge for surgical therapy due to complex anatomy and potentially difficult surgical access.ObjectivesWe reported a unique case of a massive frontal sinus IP that presented with intracranial and orbital extension, with near resolution after chemotherapy.MethodsA retrospective case review of a patient with a frontal sinus IP treated at a tertiary academic medical center.ResultsA 75-year-old male patient presented with nasal obstruction, purulent nasal discharge, and a growing left supraorbital mass. Endoscopy demonstrated a mass that filled both frontal and ethmoid sinuses, with orbital invasion. There also was substantial erosion of the posterior table, which measured 1.73 × 1.40 cm. A biopsy specimen demonstrated IP with carcinoma in situ. The patient was deemed unresectable on initial evaluation and, subsequently, underwent chemotherapy (carboplatin and paclitaxel). The tumor had a dramatic response to chemotherapy, and the patient elected for definitive surgery to remove any residual disease. During surgery, only a small focus of IP was found along the superior wall of the frontal sinus. No tumor was found elsewhere, including at the site of skull base erosion. The final pathology was IP without carcinoma in situ or dysplasia.ConclusionThis was the first reported case of chemotherapeutic "debulking" of IP, which facilitated surgical resection, despite substantial intracranial and orbital involvement. Although nearly all IPs can be treated surgically, rare cases, such as unresectable tumors, may benefit from systemic chemotherapy
Quantum squeezing of motion in a mechanical resonator
As a result of the quantum, wave-like nature of the physical world, a
harmonic oscillator can never be completely at rest. Even in the quantum ground
state, its position will always have fluctuations, called the zero-point
motion. Although the zero-point fluctuations are unavoidable, they can be
manipulated. In this work, using microwave frequency radiation pressure, we
both prepare a micron-scale mechanical system in a state near the quantum
ground state and then manipulate its thermal fluctuations to produce a
stationary, quadrature-squeezed state. We deduce that the variance of one
motional quadrature is 0.80 times the zero-point level, or 1 dB of
sub-zero-point squeezing. This work is relevant to the quantum engineering of
states of matter at large length scales, the study of decoherence of large
quantum systems, and for the realization of ultra-sensitive sensing of force
and motion
An Effective and Efficient Analytic Technique: A Bootstrap Regression Procedure and Benford\u27s Law
Previous studies in auditing have proposed statistical analytic techniques to determine the presence of unusual fluctuations in financial data. However, these techniques use past financial data and/or other explanatory variables to compute expectation parameters. If past data were contaminated with errors or fraud, then the precision of developed expectations is questionable and this leads to an increase in Type II error. The current study introduces a new analytic technique known as the bootstrap regression (BREG) procedure in the context of Benford’s Law. The BREG procedure mitigates Type II error based on Benford parameters and exact confidence intervals to assess for the presence of unusual fluctuations in financial data sets. These parameters and confidence intervals are derived independently from the financial data subject to audit. In addition, the BREG procedure mitigates Type I error and the excessive power problem. The BREG procedure was applied to a wide range of data sets such as non-fraudulent, fabricated, allegedly fraudulent, and fraudulent data sets. The overall results demonstrate that the BREG procedure effectively and efficiently identifies the presence of data anomalies. Unlike the BREG procedure, other commonly used analytic techniques were either difficult to implement or yielded inconsistent results in the context of the fraudulent data
Fracture toughness and crack-resistance curve behavior in metallic glass-matrix composites
Nonlinear-elastic fracture mechanics methods are used to assess the fracture toughness of bulk metallic glass (BMG) composites; results are compared with similar measurements for other monolithic and composite BMG alloys. Mechanistically, plastic shielding gives rise to characteristic resistance-curve behavior where the fracture resistance increases with crack extension. Specifically, confinement of damage by second-phase dendrites is shown to result in enhancement of the toughness by nearly an order of magnitude relative to unreinforced glass
A Comparative Analysis of the Bootstrap versus Traditional Statistical Procedures Applied to Digital Analysis Based on Benford\u27s Law
This study develops a bootstrap procedure applied to digital analysis based on Benford’s Law. It shows that the developed procedure provides accurate diagnoses of fraud as opposed to traditional statistical procedures. The traditional procedures such as the chi-square goodness-of-fit test exhibit the problem of excessive power as the volume of transactions becomes large. This problem may lead auditors to expend unnecessary fraud investigation costs. In contrast, applications of the proposed bootstrap procedure to reported annual earnings of S&P 1500 companies, Federal Election Commission data, and extremely fraudulent data demonstrate the robustness of the proposed procedure over different periods of time and across small or large financial data sets
- …
