1,784 research outputs found
Quantum Gravity in 2+1 Dimensions: The Case of a Closed Universe
In three spacetime dimensions, general relativity drastically simplifies,
becoming a ``topological'' theory with no propagating local degrees of freedom.
Nevertheless, many of the difficult conceptual problems of quantizing gravity
are still present. In this review, I summarize the rather large body of work
that has gone towards quantizing (2+1)-dimensional vacuum gravity in the
setting of a spatially closed universe.Comment: 61 pages, draft of review for Living Reviews; comments, criticisms,
additions, missing references welcome; v2: minor changes, added reference
First order parent formulation for generic gauge field theories
We show how a generic gauge field theory described by a BRST differential can
systematically be reformulated as a first order parent system whose spacetime
part is determined by the de Rham differential. In the spirit of Vasiliev's
unfolded approach, this is done by extending the original space of fields so as
to include their derivatives as new independent fields together with associated
form fields. Through the inclusion of the antifield dependent part of the BRST
differential, the parent formulation can be used both for on and off-shell
formulations. For diffeomorphism invariant models, the parent formulation can
be reformulated as an AKSZ-type sigma model. Several examples, such as the
relativistic particle, parametrized theories, Yang-Mills theory, general
relativity and the two dimensional sigma model are worked out in details.Comment: 36 pages, additional sections and minor correction
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Extragalactic Radio Continuum Surveys and the Transformation of Radio Astronomy
Next-generation radio surveys are about to transform radio astronomy by
discovering and studying tens of millions of previously unknown radio sources.
These surveys will provide new insights to understand the evolution of
galaxies, measuring the evolution of the cosmic star formation rate, and
rivalling traditional techniques in the measurement of fundamental cosmological
parameters. By observing a new volume of observational parameter space, they
are also likely to discover unexpected new phenomena. This review traces the
evolution of extragalactic radio continuum surveys from the earliest days of
radio astronomy to the present, and identifies the challenges that must be
overcome to achieve this transformational change.Comment: To be published in Nature Astronomy 18 Sept 201
Not the End of the World? Post-Classical Decline and Recovery in Rural Anatolia
Between the foundation of Constantinople as capital of the eastern half of the Roman Empire in 330 CE and its sack by the Fourth Crusade in 1204 CE, the Byzantine Empire underwent a full cycle from political-economic stability, through rural insecurity and agrarian decline, and back to renewed prosperity. These stages plausibly correspond to the phases of over-extension (K), subsequent release (Ω) and recovery (α) of the Adaptive Cycle in Socio-Ecological Systems. Here we track and partly quantify the consequences of those changes in different regions of Anatolia, firstly for rural settlement (via regional archaeological surveys) and secondly for land cover (via pollen analysis). We also examine the impact of climate changes on the agrarian system. While individual histories vary, the archaeological record shows a major demographic decline between ca .650 and ca. 900 CE in central and southwestern Anatolia, which was then a frontier zone between Byzantine and Arab armies. In these regions, and also in northwest Anatolia, century-scale trends in pollen indicate a substantial decline in the production of cereal and tree crops, and a smaller decline in pastoral activity. During the subsequent recovery (α) phase after 900 CE there was strong regional differentiation, with central Anatolia moving to a new economic system based on agro-pastoralism, while lowland areas of northern and western Anatolia returned to the cultivation of commercial crops such as olive trees. The extent of recovery in the agrarian economy was broadly predictable by the magnitude of its preceding decline, but the trajectories of recovery varied between different regions
Body mass index as a predictor of healthy and disease-free life expectancy between ages 50 and 75 : a multicohort study
BACKGROUND: While many studies have shown associations between obesity and increased risk of morbidity and mortality, little comparable information is available on how body mass index (BMI) impacts health expectancy. We examined associations of BMI with healthy and chronic disease-free life expectancy in four European cohort studies. METHODS: Data were drawn from repeated waves of cohort studies in England, Finland, France and Sweden. BMI was categorized into four groups from normal weight (18.5-24.9 kg m(-2)) to obesity class II (>= 35 kg m(-2)). Health expectancy was estimated with two health indicators: sub-optimal self-rated health and having a chronic disease (cardiovascular disease, cancer, respiratory disease and diabetes). Multistate life table models were used to estimate sex-specific healthy life expectancy and chronic disease-free life expectancy from ages 50 to 75 years for each BMI category. RESULTS: The proportion of life spent in good perceived health between ages 50 and 75 progressively decreased with increasing BMI from 81% in normal weight men and women to 53% in men and women with class II obesity which corresponds to an average 7-year difference in absolute terms. The proportion of life between ages 50 and 75 years without chronic diseases decreased from 62 and 65% in normal weight men and women and to 29 and 36% in men and women with class II obesity, respectively. This corresponds to an average 9 more years without chronic diseases in normal weight men and 7 more years in normal weight women between ages 50 and 75 years compared to class II obese men and women. No consistent differences were observed between cohorts. CONCLUSIONS: Excess BMI is associated with substantially shorter healthy and chronic disease-free life expectancy, suggesting that tackling obesity would increase years lived in good health in populations.Peer reviewe
The Rossiter-McLaughlin effect in Exoplanet Research
The Rossiter-McLaughlin effect occurs during a planet's transit. It provides
the main means of measuring the sky-projected spin-orbit angle between a
planet's orbital plane, and its host star's equatorial plane. Observing the
Rossiter-McLaughlin effect is now a near routine procedure. It is an important
element in the orbital characterisation of transiting exoplanets. Measurements
of the spin-orbit angle have revealed a surprising diversity, far from the
placid, Kantian and Laplacian ideals, whereby planets form, and remain, on
orbital planes coincident with their star's equator. This chapter will review a
short history of the Rossiter-McLaughlin effect, how it is modelled, and will
summarise the current state of the field before describing other uses for a
spectroscopic transit, and alternative methods of measuring the spin-orbit
angle.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H.
Deeg & J.A. Belmont
Glial Cell Line-Derived Neurotrophic Factor (GDNF) as a Novel Candidate Gene of Anxiety.
Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor for dopaminergic neurons with promising therapeutic potential in Parkinson's disease. A few association analyses between GDNF gene polymorphisms and psychiatric disorders such as schizophrenia, attention deficit hyperactivity disorder and drug abuse have also been published but little is known about any effects of these polymorphisms on mood characteristics such as anxiety and depression. Here we present an association study between eight (rs1981844, rs3812047, rs3096140, rs2973041, rs2910702, rs1549250, rs2973050 and rs11111) GDNF single nucleotide polymorphisms (SNPs) and anxiety and depression scores measured by the Hospital Anxiety and Depression Scale (HADS) on 708 Caucasian young adults with no psychiatric history. Results of the allele-wise single marker association analyses provided significant effects of two single nucleotide polymorphisms on anxiety scores following the Bonferroni correction for multiple testing (p = 0.00070 and p = 0.00138 for rs3812047 and rs3096140, respectively), while no such result was obtained on depression scores. Haplotype analysis confirmed the role of these SNPs; mean anxiety scores raised according to the number of risk alleles present in the haplotypes (p = 0.00029). A significant sex-gene interaction was also observed since the effect of the rs3812047 A allele as a risk factor of anxiety was more pronounced in males. In conclusion, this is the first demonstration of a significant association between the GDNF gene and mood characteristics demonstrated by the association of two SNPs of the GDNF gene (rs3812047 and rs3096140) and individual variability of anxiety using self-report data from a non-clinical sample
Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition.
Mutations of the tricarboxylic acid cycle enzyme fumarate hydratase cause hereditary leiomyomatosis and renal cell cancer. Fumarate hydratase-deficient renal cancers are highly aggressive and metastasize even when small, leading to a very poor clinical outcome. Fumarate, a small molecule metabolite that accumulates in fumarate hydratase-deficient cells, plays a key role in cell transformation, making it a bona fide oncometabolite. Fumarate has been shown to inhibit α-ketoglutarate-dependent dioxygenases that are involved in DNA and histone demethylation. However, the link between fumarate accumulation, epigenetic changes, and tumorigenesis is unclear. Here we show that loss of fumarate hydratase and the subsequent accumulation of fumarate in mouse and human cells elicits an epithelial-to-mesenchymal-transition (EMT), a phenotypic switch associated with cancer initiation, invasion, and metastasis. We demonstrate that fumarate inhibits Tet-mediated demethylation of a regulatory region of the antimetastatic miRNA cluster mir-200ba429, leading to the expression of EMT-related transcription factors and enhanced migratory properties. These epigenetic and phenotypic changes are recapitulated by the incubation of fumarate hydratase-proficient cells with cell-permeable fumarate. Loss of fumarate hydratase is associated with suppression of miR-200 and the EMT signature in renal cancer and is associated with poor clinical outcome. These results imply that loss of fumarate hydratase and fumarate accumulation contribute to the aggressive features of fumarate hydratase-deficient tumours.This work was supported by the Medical Research Council (UK). S.F. was supported by a Herchel Smith Research Studentship and K.F. by an MRC Career Development Award. E.R.M is supported by the ERC Advanced Researcher award 323004–ONCOTREAT. P.H.M. is supported by Senior Investigator Awards from the Wellcome Trust and NIHR. The Cambridge Human Research Tissue Bank and A.W. are supported by the NIHR Cambridge Biomedical Research Centre.This is the author accepted manuscript. The final version is available from Nature Publishing at http://dx.doi.org/10.1038/nature19353
Response to Therapeutic Sleep Deprivation: A Naturalistic Study of Clinical and Genetic Factors and Post-treatment Depressive Symptom Trajectory
Research has shown that therapeutic sleep deprivation (SD) has rapid antidepressant effects in the majority of depressed patients. Investigation of factors preceding and accompanying these effects may facilitate the identification of the underlying biological
mechanisms. This exploratory study aimed to examine clinical and genetic factors predicting response to SD and determine the impact of SD on illness course. Mood during SD was also assessed via visual analogue scale. Depressed inpatients (n = 78) and healthy controls (n = 15) underwent ~36 h of SD. Response to SD was defined as a score of ≤ 2 on the Clinical Global Impression
Scale for Global Improvement. Depressive symptom trajectories were evaluated for up to a month using self/expert ratings. Impact of genetic burden was calculated using polygenic risk scores for major depressive disorder. In total, 72% of patients responded to SD. Responders and non-responders did not differ in baseline self/expert depression symptom ratings, but mood differed. Response was associated with lower age (p = 0.007) and later age at life-time disease onset (p = 0.003). Higher genetic burden of depression
was observed in non-responders than healthy controls. Up to a month post SD, depressive symptoms decreased in both patients groups, but more in responders, in whom effects were sustained. The present findings suggest that re-examining SD with a greater focus on biological mechanisms will lead to better understanding of mechanisms of depression
- …
