335 research outputs found
Experimental study of the competition between Kondo and RKKY interactions for Mn spins in a model alloy system
The quasicrystal Al-Pd-Mn is a model system for an experimental study of the
competition between Ruderman-Kittel-Kasuya-Yoshida (RKKY) and Kondo
interactions. First, specific of such alloys, only a few Mn atoms carry an
effective spin and their concentration x is tunable over several orders of
magnitude, even though the Mn amount is almost constant. Second, the
characteristic energy scales for the interactions lie in the Kelvin range.
Hence we could study the magnetization on both side of these energy scales,
covering a range of temperatures [0.1-100 K] and magnetic fields (mu_B H/k_B= 0
to 5 K) for 22 samples and x varying over 2 decades. Using very general Kondo
physics arguments, and thus carrying out the data analysis with no preconceived
model, we found a very robust and simple result: The magnetization is a sum of
a pure Kondo (T_K=3.35K) and a pure RKKY contributions, whatever the moment
concentration is and this surprisingly up to the concentration where the RKKY
couplings dominate fully and thus cannot be considered as a perturbation.Comment: 18 pages, 18 figure
On the low temperature properties and specific anisotropy of pure anisotropically paired superconductors
Dependences of low temperature behavior and anisotropy of various physical
quantities for pure unconventional superconductors upon a particular form of
momentum direction dependence for the superconducting order parameter (within
the framework of the same symmetry type of superconducting pairing) are
considered. A special attention is drawn to the possibility of different
multiplicities of the nodes of the order parameter under their fixed positions
on the Fermi surface, which are governed by symmetry. The problem of an
unambiguous identification of a type of superconducting pairing on the basis of
corresponding experimental results is discussed. Quasiparticle density of
states at low energy for both homogeneous and mixed states, the low temperature
dependences of the specific heat, penetration depth and thermal conductivity,
the I-V curves of SS and NS tunnel junctions at low voltages are examined. A
specific anisotropy of the boundary conditions for unconventional
superconducting order parameter near for the case of specular reflection
from the boundary is also investigated.Comment: 20 page
On the thermoelectricity of correlated electrons in the zero-temperature limit
The Seebeck coefficient of a metal is expected to display a linear
temperature-dependence in the zero-temperature limit. To attain this regime, it
is often necessary to cool the system well below 1K. We put under scrutiny the
magnitude of this term in different families of strongly-interacting electronic
systems. For a wide range of compounds (including heavy-fermion, organic and
various oxide families) a remarkable correlation between this term and the
electronic specific heat is found. We argue that a dimensionless ratio relating
these two signatures of mass renormalisation contains interesting information
about the ground state of each system. The absolute value of this ratio remains
close to unity in a wide range of strongly-correlated electron systems.Comment: 15 pages, including two figure
Anomalous magnetic field dependence of the thermodynamic transition line in the isotropic superconductor (K,Ba)Bi03
Thermodynamic (specific heat, reversible magnetization, tunneling
spectroscopy) and transport measurements have been performed on high quality
(K,Ba)BiO single crystals. The temperature dependence of the magnetic field
corresponding to the onset of the specific heat anomaly presents a
clear positive curvature. is significantly smaller than the field
for which the superconducting gap vanishes but is closely related to
the irreversibility line deduced from transport data. Moreover, the temperature
dependence of the reversible magnetization present a strong deviation from the
Ginzburg--Landau theory emphasazing the peculiar nature of the superconducting
transition in this material.Comment: 4 pages, 4 figures, 28 reference
High temperature superconductivity (Tc onset at 34K) in the high pressure orthorhombic phase of FeSe
We have studied the structural and superconducting properties of tetragonal
FeSe under pressures up to 26GPa using synchrotron radiation and diamond anvil
cells. The bulk modulus of the tetragonal phase is 28.5(3)GPa, much smaller
than the rest of Fe based superconductors. At 12GPa we observe a phase
transition from the tetragonal to an orthorhombic symmetry. The high pressure
orthorhombic phase has a higher Tc reaching 34K at 22GPa.Comment: 15 pages, 4 figure
VEGF binding to NRP1 is essential for VEGF stimulation of endothelial cell migration, complex formation between NRP1 and VEGFR2, and signaling via FAK Tyr407 phosphorylation
In endothelial cells, neuropilin-1 (NRP1) binds vascular endothelial growth factor (VEGF)-A and is thought to act as a coreceptor for kinase insert domain-containing receptor (KDR) by associating with KDR and enhancing VEGF signaling. Here we report mutations in the NRP1 b1 domain (Y297A and D320A), which result in complete loss of VEGF binding. Overexpression of Y297A and D320A NRP1 in human umbilical vein endothelial cells reduced high-affinity VEGF binding and migration toward a VEGF gradient, and markedly inhibited VEGF-induced angiogenesis in a coculture cell model. The Y297A NRP1 mutant also disrupted complexation between NRP1 and KDR and decreased VEGF-dependent phosphorylation of focal adhesion kinase at Tyr407, but had little effect on other signaling pathways. Y297A NRP1, however, heterodimerized with wild-type NRP1 and NRP2 indicating that nonbinding NRP1 mutants can act in a dominant-negative manner through formation of NRP1 dimers with reduced binding affinity for VEGF. These findings indicate that VEGF binding to NRP1 has specific effects on endothelial cell signaling and is important for endothelial cell migration and angiogenesis mediated via complex formation between NRP1 and KDR and increased signaling to focal adhesions. Identification of key residues essential for VEGF binding and biological functions provides the basis for a rational design of antagonists of VEGF binding to NRP1
A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress.
Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation
Heparan sulfate proteoglycans: structure, protein interactions and cell signaling
Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam sulfatos possuem papel na sinalização celular como receptores ou coreceptores para diferentes ligantes. Esta ligação dispara vias de sinalização celular levam à fosforilação de diversas proteínas citosólicas ou com ou sem interações diretas com o citoesqueleto, culminando na regulação gênica. O papel dos proteoglicanos de heparam sulfato na sinalização celular e vias de captação endocítica também são discutidas nesta revisão.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal de São Paulo (UNIFESP) Departamento de BioquímicaUniversidade Federal de São Paulo (UNIFESP) Departamento de OftalmologiaUNIFESP, Depto. de BioquímicaUNIFESP, Depto. de OftalmologiaSciEL
Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize
Metabolism and Growth in Arabidopsis Depend on the Daytime Temperature but Are Temperature-Compensated against Cool Nights
Diurnal cycles provide a tractable system to study the response of metabolism and growth to fluctuating temperatures. We reasoned that the response to daytime and night temperature may vary; while daytime temperature affects photosynthesis, night temperature affects use of carbon that was accumulated in the light. Three Arabidopsis thaliana accessions were grown in thermocycles under carbon-limiting conditions with different daytime or night temperatures (12 to 24 degrees C) and analyzed for biomass, photosynthesis, respiration, enzyme activities, protein levels, and metabolite levels. The data were used to model carbon allocation and growth rates in the light and dark. Low daytime temperature led to an inhibition of photosynthesis and an even larger inhibition of growth. The inhibition of photosynthesis was partly ameliorated by a general increase in protein content. Low night temperature had no effect on protein content, starch turnover, or growth. In a warm night, there is excess capacity for carbon use. We propose that use of this capacity is restricted by feedback inhibition, which is relaxed at lower night temperature, thus buffering growth against fluctuations in night temperature. As examples, the rate of starch degradation is completely temperature compensated against even sudden changes in temperature, and polysome loading increases when the night temperature is decreased
- …
