335 research outputs found

    Experimental study of the competition between Kondo and RKKY interactions for Mn spins in a model alloy system

    Full text link
    The quasicrystal Al-Pd-Mn is a model system for an experimental study of the competition between Ruderman-Kittel-Kasuya-Yoshida (RKKY) and Kondo interactions. First, specific of such alloys, only a few Mn atoms carry an effective spin and their concentration x is tunable over several orders of magnitude, even though the Mn amount is almost constant. Second, the characteristic energy scales for the interactions lie in the Kelvin range. Hence we could study the magnetization on both side of these energy scales, covering a range of temperatures [0.1-100 K] and magnetic fields (mu_B H/k_B= 0 to 5 K) for 22 samples and x varying over 2 decades. Using very general Kondo physics arguments, and thus carrying out the data analysis with no preconceived model, we found a very robust and simple result: The magnetization is a sum of a pure Kondo (T_K=3.35K) and a pure RKKY contributions, whatever the moment concentration is and this surprisingly up to the concentration where the RKKY couplings dominate fully and thus cannot be considered as a perturbation.Comment: 18 pages, 18 figure

    On the low temperature properties and specific anisotropy of pure anisotropically paired superconductors

    Full text link
    Dependences of low temperature behavior and anisotropy of various physical quantities for pure unconventional superconductors upon a particular form of momentum direction dependence for the superconducting order parameter (within the framework of the same symmetry type of superconducting pairing) are considered. A special attention is drawn to the possibility of different multiplicities of the nodes of the order parameter under their fixed positions on the Fermi surface, which are governed by symmetry. The problem of an unambiguous identification of a type of superconducting pairing on the basis of corresponding experimental results is discussed. Quasiparticle density of states at low energy for both homogeneous and mixed states, the low temperature dependences of the specific heat, penetration depth and thermal conductivity, the I-V curves of SS and NS tunnel junctions at low voltages are examined. A specific anisotropy of the boundary conditions for unconventional superconducting order parameter near TcT_c for the case of specular reflection from the boundary is also investigated.Comment: 20 page

    On the thermoelectricity of correlated electrons in the zero-temperature limit

    Full text link
    The Seebeck coefficient of a metal is expected to display a linear temperature-dependence in the zero-temperature limit. To attain this regime, it is often necessary to cool the system well below 1K. We put under scrutiny the magnitude of this term in different families of strongly-interacting electronic systems. For a wide range of compounds (including heavy-fermion, organic and various oxide families) a remarkable correlation between this term and the electronic specific heat is found. We argue that a dimensionless ratio relating these two signatures of mass renormalisation contains interesting information about the ground state of each system. The absolute value of this ratio remains close to unity in a wide range of strongly-correlated electron systems.Comment: 15 pages, including two figure

    Anomalous magnetic field dependence of the thermodynamic transition line in the isotropic superconductor (K,Ba)Bi03

    Get PDF
    Thermodynamic (specific heat, reversible magnetization, tunneling spectroscopy) and transport measurements have been performed on high quality (K,Ba)BiO3_3 single crystals. The temperature dependence of the magnetic field HCpH_{Cp} corresponding to the onset of the specific heat anomaly presents a clear positive curvature. HCpH_{Cp} is significantly smaller than the field HΔH_\Delta for which the superconducting gap vanishes but is closely related to the irreversibility line deduced from transport data. Moreover, the temperature dependence of the reversible magnetization present a strong deviation from the Ginzburg--Landau theory emphasazing the peculiar nature of the superconducting transition in this material.Comment: 4 pages, 4 figures, 28 reference

    VEGF binding to NRP1 is essential for VEGF stimulation of endothelial cell migration, complex formation between NRP1 and VEGFR2, and signaling via FAK Tyr407 phosphorylation

    Get PDF
    In endothelial cells, neuropilin-1 (NRP1) binds vascular endothelial growth factor (VEGF)-A and is thought to act as a coreceptor for kinase insert domain-containing receptor (KDR) by associating with KDR and enhancing VEGF signaling. Here we report mutations in the NRP1 b1 domain (Y297A and D320A), which result in complete loss of VEGF binding. Overexpression of Y297A and D320A NRP1 in human umbilical vein endothelial cells reduced high-affinity VEGF binding and migration toward a VEGF gradient, and markedly inhibited VEGF-induced angiogenesis in a coculture cell model. The Y297A NRP1 mutant also disrupted complexation between NRP1 and KDR and decreased VEGF-dependent phosphorylation of focal adhesion kinase at Tyr407, but had little effect on other signaling pathways. Y297A NRP1, however, heterodimerized with wild-type NRP1 and NRP2 indicating that nonbinding NRP1 mutants can act in a dominant-negative manner through formation of NRP1 dimers with reduced binding affinity for VEGF. These findings indicate that VEGF binding to NRP1 has specific effects on endothelial cell signaling and is important for endothelial cell migration and angiogenesis mediated via complex formation between NRP1 and KDR and increased signaling to focal adhesions. Identification of key residues essential for VEGF binding and biological functions provides the basis for a rational design of antagonists of VEGF binding to NRP1

    A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress.

    Get PDF
    Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation

    Heparan sulfate proteoglycans: structure, protein interactions and cell signaling

    Get PDF
    Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam sulfatos possuem papel na sinalização celular como receptores ou coreceptores para diferentes ligantes. Esta ligação dispara vias de sinalização celular levam à fosforilação de diversas proteínas citosólicas ou com ou sem interações diretas com o citoesqueleto, culminando na regulação gênica. O papel dos proteoglicanos de heparam sulfato na sinalização celular e vias de captação endocítica também são discutidas nesta revisão.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal de São Paulo (UNIFESP) Departamento de BioquímicaUniversidade Federal de São Paulo (UNIFESP) Departamento de OftalmologiaUNIFESP, Depto. de BioquímicaUNIFESP, Depto. de OftalmologiaSciEL

    Metabolism and Growth in Arabidopsis Depend on the Daytime Temperature but Are Temperature-Compensated against Cool Nights

    No full text
    Diurnal cycles provide a tractable system to study the response of metabolism and growth to fluctuating temperatures. We reasoned that the response to daytime and night temperature may vary; while daytime temperature affects photosynthesis, night temperature affects use of carbon that was accumulated in the light. Three Arabidopsis thaliana accessions were grown in thermocycles under carbon-limiting conditions with different daytime or night temperatures (12 to 24 degrees C) and analyzed for biomass, photosynthesis, respiration, enzyme activities, protein levels, and metabolite levels. The data were used to model carbon allocation and growth rates in the light and dark. Low daytime temperature led to an inhibition of photosynthesis and an even larger inhibition of growth. The inhibition of photosynthesis was partly ameliorated by a general increase in protein content. Low night temperature had no effect on protein content, starch turnover, or growth. In a warm night, there is excess capacity for carbon use. We propose that use of this capacity is restricted by feedback inhibition, which is relaxed at lower night temperature, thus buffering growth against fluctuations in night temperature. As examples, the rate of starch degradation is completely temperature compensated against even sudden changes in temperature, and polysome loading increases when the night temperature is decreased
    corecore