71 research outputs found

    On the use of NAND flash memory in high-performance relational databases

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 47-49).High-density NAND flash storage has become relatively inexpensive due to the popularity of various consumer electronics. Recently, several manufacturers have released IDE-compatible NAND flash-based drives in sizes up to 64 GB at reasonable (sub-$1000) prices. Because flash is significantly more durable than mechanical hard drives and requires considerably less energy, there is some speculation that large data centers will adopt these devices. As database workloads make up a substantial fraction of the processing done by data centers, it is interesting to ask how switching to flash-based storage will affect the performance of database systems. We evaluate this question using IDE-based flash drives from two major manufacturers. We measure their read and write performance and find that flash has excellent random read performance, acceptable sequential read performance, and quite poor write performance compared to conventional IDE disks. We then consider how standard database algorithms are affected by these performance characteristics and find that the fast random read capability dramatically improves the performance of secondary indexes and index-based join algorithms. We next investigate using logstructured filesystems to mitigate the poor write performance of flash and find an 8.2x improvement in random write performance, but at the cost of a 3.7x decrease in random read performance. Finally, we study techniques for exploiting the inherent parallelism of multiple-chip flash devices, and we find that adaptive coding strategies can yield a 2x performance improvement over static ones. We conclude that in many cases flash disk performance is still worse than on traditional drives and that current flash technology may not yet be mature enough for widespread database adoption if performance is a dominant factor. Finally, we briefly speculate how this landscape may change based on expected performance of next-generation flash memories.by Daniel Myers.S.M

    The River Watchers

    Get PDF

    Cognitive Architectures for Language Agents

    Full text link
    Recent efforts have incorporated large language models (LLMs) with external resources (e.g., the Internet) or internal control flows (e.g., prompt chaining) for tasks requiring grounding or reasoning. However, these efforts have largely been piecemeal, lacking a systematic framework for constructing a fully-fledged language agent. To address this challenge, we draw on the rich history of agent design in symbolic artificial intelligence to develop a blueprint for a new wave of cognitive language agents. We first show that LLMs have many of the same properties as production systems, and recent efforts to improve their grounding or reasoning mirror the development of cognitive architectures built around production systems. We then propose Cognitive Architectures for Language Agents (CoALA), a conceptual framework to systematize diverse methods for LLM-based reasoning, grounding, learning, and decision making as instantiations of language agents in the framework. Finally, we use the CoALA framework to highlight gaps and propose actionable directions toward more capable language agents in the future.Comment: 16 pages of main content, 10 pages of references, 5 figures. Equal contribution among the first two authors, order decided by coin flip. A CoALA-based repo of recent work on language agents: https://github.com/ysymyth/awesome-language-agent

    Show or Tell? Demonstration is More Robust to Changes in Shared Perception than Explanation

    Get PDF
    Successful teaching entails a complex interaction between a teacher and a learner. The teacher must select and convey information based on what they think the learner perceives and believes. Teaching always involves misaligned beliefs, but studies of pedagogy often focus on situations where teachers and learners share perceptions. Nonetheless, a teacher and learner may not always experience or attend to the same aspects of the environment. Here, we study how misaligned perceptions influence communication. We hypothesize that the efficacy of different forms of communication depends on the shared perceptual state between teacher and learner. We develop a cooperative teaching game to test whether concrete mediums (demonstrations, or "showing") are more robust than abstract ones (language, or "telling") when the teacher and learner are not perceptually aligned. We find evidence that (1) language-based teaching is more affected by perceptual misalignment, but (2) demonstration-based teaching is less likely to convey nuanced information. We discuss implications for human pedagogy and machine learning.Comment: 7 pages, 4 figures. Proceedings for the 42nd Annual Meeting of the Cognitive Science Societ

    Learning Rewards from Linguistic Feedback

    Full text link
    We explore unconstrained natural language feedback as a learning signal for artificial agents. Humans use rich and varied language to teach, yet most prior work on interactive learning from language assumes a particular form of input (e.g., commands). We propose a general framework which does not make this assumption, using aspect-based sentiment analysis to decompose feedback into sentiment about the features of a Markov decision process. We then perform an analogue of inverse reinforcement learning, regressing the sentiment on the features to infer the teacher's latent reward function. To evaluate our approach, we first collect a corpus of teaching behavior in a cooperative task where both teacher and learner are human. We implement three artificial learners: sentiment-based "literal" and "pragmatic" models, and an inference network trained end-to-end to predict latent rewards. We then repeat our initial experiment and pair them with human teachers. All three successfully learn from interactive human feedback. The sentiment models outperform the inference network, with the "pragmatic" model approaching human performance. Our work thus provides insight into the information structure of naturalistic linguistic feedback as well as methods to leverage it for reinforcement learning.Comment: 9 pages, 4 figures. AAAI '2

    Learning with Language-Guided State Abstractions

    Full text link
    We describe a framework for using natural language to design state abstractions for imitation learning. Generalizable policy learning in high-dimensional observation spaces is facilitated by well-designed state representations, which can surface important features of an environment and hide irrelevant ones. These state representations are typically manually specified, or derived from other labor-intensive labeling procedures. Our method, LGA (language-guided abstraction), uses a combination of natural language supervision and background knowledge from language models (LMs) to automatically build state representations tailored to unseen tasks. In LGA, a user first provides a (possibly incomplete) description of a target task in natural language; next, a pre-trained LM translates this task description into a state abstraction function that masks out irrelevant features; finally, an imitation policy is trained using a small number of demonstrations and LGA-generated abstract states. Experiments on simulated robotic tasks show that LGA yields state abstractions similar to those designed by humans, but in a fraction of the time, and that these abstractions improve generalization and robustness in the presence of spurious correlations and ambiguous specifications. We illustrate the utility of the learned abstractions on mobile manipulation tasks with a Spot robot.Comment: ICLR 202

    Representational Alignment Supports Effective Machine Teaching

    Full text link
    A good teacher should not only be knowledgeable; but should be able to communicate in a way that the student understands -- to share the student's representation of the world. In this work, we integrate insights from machine teaching and pragmatic communication with the burgeoning literature on representational alignment to characterize a utility curve defining a relationship between representational alignment and teacher capability for promoting student learning. To explore the characteristics of this utility curve, we design a supervised learning environment that disentangles representational alignment from teacher accuracy. We conduct extensive computational experiments with machines teaching machines, complemented by a series of experiments in which machines teach humans. Drawing on our findings that improved representational alignment with a student improves student learning outcomes (i.e., task accuracy), we design a classroom matching procedure that assigns students to teachers based on the utility curve. If we are to design effective machine teachers, it is not enough to build teachers that are accurate -- we want teachers that can align, representationally, to their students too.Comment: Preprin

    What is Love: A YA Queer Rom Com

    No full text
    This queer young adult novel aims to address issues regarding lgbtq+ youth and mental health. Most of the queer media that has become popular in recent years tends to focus primarily on male characters, so this project will specifically focus on centering young female and non-binary voices. There are many stigmas surrounding mental health, especially with our young people. I want to help destigmatize these conversations specifically around anxiety and depression in lgbtq+ youth. The novel, titled What is Love , is inspired by Heartstopper and features a heartfelt coming-of-age story about two queer teens navigating friendships, mental health, and love. I want to explore multiple capacities of love in this work, whether that’s romantic love, familial love, platonic love, and, arguably the most important, self-love. The story is told in a dual- perspective in order to get a varied grasp of teenage issues as a whole. These characters include Lily Wright, an anxiety-driven and depressed teenager who’s trying to overcome her mental health issues by realizing she’s capable and worthy of love, and Julia Torres, the school’s “it-girl” who’s struggling with her sexuality and figuring out where she fits in society. Set in central Texas, this story presents as a love letter to fandom culture, queer youth, and platonic friendships, serving as a way to flip the classic narrative of early 2000s rom coms.Englis
    corecore