3,929 research outputs found
Mobile Formation Coordination and Tracking Control for Multiple Non-holonomic Vehicles
This paper addresses forward motion control for trajectory tracking and
mobile formation coordination for a group of non-holonomic vehicles on SE(2).
Firstly, by constructing an intermediate attitude variable which involves
vehicles' position information and desired attitude, the translational and
rotational control inputs are designed in two stages to solve the trajectory
tracking problem. Secondly, the coordination relationships of relative
positions and headings are explored thoroughly for a group of non-holonomic
vehicles to maintain a mobile formation with rigid body motion constraints. We
prove that, except for the cases of parallel formation and translational
straight line formation, a mobile formation with strict rigid-body motion can
be achieved if and only if the ratios of linear speed to angular speed for each
individual vehicle are constants. Motion properties for mobile formation with
weak rigid-body motion are also demonstrated. Thereafter, based on the proposed
trajectory tracking approach, a distributed mobile formation control law is
designed under a directed tree graph. The performance of the proposed
controllers is validated by both numerical simulations and experiments
Formation Shape Control Based on Distance Measurements Using Lie Bracket Approximations
We study the problem of distance-based formation control in autonomous
multi-agent systems in which only distance measurements are available. This
means that the target formations as well as the sensed variables are both
determined by distances. We propose a fully distributed distance-only control
law, which requires neither a time synchronization of the agents nor storage of
measured data. The approach is applicable to point agents in the Euclidean
space of arbitrary dimension. Under the assumption of infinitesimal rigidity of
the target formations, we show that the proposed control law induces local
uniform asymptotic stability. Our approach involves sinusoidal perturbations in
order to extract information about the negative gradient direction of each
agent's local potential function. An averaging analysis reveals that the
gradient information originates from an approximation of Lie brackets of
certain vector fields. The method is based on a recently introduced approach to
the problem of extremum seeking control. We discuss the relation in the paper
Optimal control of nonlinear partially-unknown systems with unsymmetrical input constraints and its applications to the optimal UAV circumnavigation problem
Aimed at solving the optimal control problem for nonlinear systems with
unsymmetrical input constraints, we present an online adaptive approach for
partially unknown control systems/dynamics. The designed algorithm converges
online to the optimal control solution without the knowledge of the internal
system dynamics. The optimality of the obtained control policy and the
stability for the closed-loop dynamic optimality are proved theoretically. The
proposed method greatly relaxes the assumption on the form of the internal
dynamics and input constraints in previous works. Besides, the control design
framework proposed in this paper offers a new approach to solve the optimal
circumnavigation problem involving a moving target for a fixed-wing unmanned
aerial vehicle (UAV). The control performance of our method is compared with
that of the existing circumnavigation control law in a numerical simulation and
the simulation results validate the effectiveness of our algorithm
- …
