174 research outputs found
<sup>1</sup>H-<sup>13</sup>C NMR-based profiling of biotechnological starch utilization
Starch
is used in food- and nonfood applications as a renewable
and degradable source of carbon and energy. Insight into the chemical
detail of starch degradation remains challenging as the starch constituents
amylose and amylopectin are homopolymers. We show that considerable
molecular detail of starch fragmentation can be obtained from multivariate
analysis of spectral features in optimized <sup>1</sup>H–<sup>13</sup>C NMR spectroscopy of starch fragments to identify relevant
features that distinguish processes in starch utilization. As a case
study, we compare the profiles of starch fragments in commercial beer
samples. Spectroscopic profiles of homooligomeric starch fragments
can be excellent indicators of process conditions. In addition, differences
in the structure and composition of starch fragments have predictive
value for downstream process output such as ethanol production from
starch. Thus, high-resolution <sup>1</sup>H–<sup>13</sup>C
NMR spectroscopic profiles of homooligomeric fragment mixtures in
conjunction with chemometric methods provide a useful addition to
the analytical chemistry toolbox of biotechnological starch utilization
It All Starts with a Sandwich: Identification of Sialidases with Trans-Glycosylation Activity
Sialidases (3.2.1.18) may exhibit trans-sialidase activity to catalyze sialylation of lactose if the active site topology is congruent with that of the Trypanosoma cruzi trans-sialidase (EC 2.4.1.-). The present work was undertaken to test the hypothesis that a particular aromatic sandwich structure of two amino acids proximal to the active site of the T. cruzi trans-sialidase infers trans-sialidase activity. On this basis, four enzymes with putative trans-sialidase activity were identified through an iterative alignment from 2909 native sialidases available in GenBank, which were cloned and expressed in Escherichia coli. Of these, one enzyme, SialH, derived from Haemophilus parasuis had an aromatic sandwich structure on the protein surface facing the end of the catalytic site (Phe168; Trp366), and was indeed found to exhibit trans-sialidase activity. SialH catalyzed production of the human milk oligosaccharide 3'-sialyllactose as well as the novel trans-sialylation product 3-sialyllactose using casein glycomacropeptide as sialyl donor and lactose as acceptor. The findings corroborated that Tyr119 and Trp312 in the T. cruzi trans-sialidase are part of an aromatic sandwich structure that confers trans-sialylation activity for lactose sialylation. The in silico identification of trans-glycosidase activity by rational active site topology alignment thus proved to be a quick tool for selecting putative trans-sialidases amongst a large group of glycosyl hydrolases. The approach moreover provided data that help understand structure-function relations of trans-sialidases
Recommended from our members
Effect of blending Jersey and Holstein-Friesian milk on Cheddar cheese processing, composition and quality
The effect of Jersey milk use solely or at different inclusion rates in Holstein-Friesian milk on Cheddar cheese production was investigated. Cheese was produced every month over a year using nonstandardized milk consisting of 0, 25, 50, 75, and 100% Jersey milk in Holstein-Friesian milk in a 100-L vat. Actual, theoretical, and moisture-adjusted yield increased linearly with percentage of Jersey milk. This was also associated with increased fat and protein recoveries and lower yield of whey. The composition of whey was also affected by the percentage of Jersey milk, with lower whey protein and higher whey lactose and solids. Cutting time was lower when Jersey milk was used, but the cutting to milling time was higher because of slower acidity development. Hence, overall cheesemaking time was not affected by the use of Jersey milk. Using Jersey milk increased cheese fat content in autumn, winter, and spring and decreased cheese moisture in spring and summer. Cheese protein, salt, and pH levels were not affected. Cheese was analyzed for texture and color, and it was professionally graded at 3 and 8 mo. The effect of Jersey on cheese sensory quality was an increase in cheese yellowness during summer and a higher total grading score at 3 mo in winter; no other difference in cheese quality was found. The study indicates that using Jersey milk is a valid method of improving Cheddar cheese yield
Genetic analysis of orotic acid predicted with Fourier transform infrared milk spectra
Fourier transform infrared spectral analysis is a cheap and fast method to predict milk composition. A not very well studied milk component is orotic acid. Orotic acid is an intermediate in the biosynthesis pathway of pyrimidine nucleotides and is an indicator for the metabolic cattle disorder deficiency of uridine monophosphate synthase. The function of orotic acid in milk and its effect on calf health, health of humans consuming milk or milk products, manufacturing properties of milk, and its potential as an indicator trait are largely unknown. The aims of this study were to determine if milk orotic acid can be predicted from infrared milk spectra and to perform a large-scale phenotypic and genetic analysis of infrared-predicted milk orotic acid. An infrared prediction model for orotic acid was built using a training population of 292 Danish Holstein and 299 Danish Jersey cows, and a validation population of 381 Danish Holstein cows. Milk orotic acid concentration was determined with nuclear magnetic resonance spectroscopy. For genetic analysis of infrared orotic acid, 3 study populations were used: 3,210 Danish Holstein cows, 3,360 Danish Jersey cows, and 1,349 Dutch Holstein Friesian cows. Using partial least square regression, a prediction model for orotic acid was built with 18 latent variables. The error of the prediction for the infrared model varied from 1.0 to 3.2 mg/L, and the accuracy varied from 0.68 to 0.86. Heritability of infrared orotic acid predicted with the standardized prediction model was 0.18 for Danish Holstein, 0.09 for Danish Jersey, and 0.37 for Dutch Holstein Friesian. We conclude that milk orotic acid can be predicted with moderate to good accuracy based on infrared milk spectra and that infrared-predicted orotic acid is heritable. The availability of a cheap and fast method to predict milk orotic acid opens up possibilities to study the largely unknown functions of milk orotic acid.</p
Recommended from our members
Human milk oligosaccharide profiles remain unaffected by maternal pre-pregnancy body mass index in an observational study.
Human milk oligosaccharides (HMOs) are important carbohydrates in human milk that infants cannot digest, acting as prebiotics linked to infant health. The risk of childhood obesity increases with maternal obesity, potentially mediated through the gut microbiota affected by the available HMOs. Studies on whether maternal obesity affects HMO abundance, yield conflicting results. This study aimed to investigate the HMO profile and its association with maternal obesity measured by pre-pregnancy body mass index (BMI) and infant anthropometrics. The results were discussed in the context of existing literature. 90 human milk samples were collected at 3 months postpartum from mothers in three BMI-groups: 32 normal weight (BMI: 18.5-24.99 kg/m2), 34 overweight (BMI: 25-30 kg/m2), and 24 obese (BMI > 30 kg/m2). The samples were analyzed using nano liquid chromatography chip quadrupole time-of-flight mass spectrometry yielding 51 HMO structures and isomers. Their peak areas were integrated and normalized to determine relative abundances. Univariate and multivariate analysis showed associations between relative HMO abundance and donors secretor status and specific infant anthropometric variables, but not with maternal pre-pregnancy BMI. This study does not support the hypothesis that maternal overweight influences the HMO profile and highlights the importance of reporting results despite absence of significant correlations
Metabolic Effects of Bovine Milk Oligosaccharides on Selected Commensals of the Infant Microbiome - Commensalism and Postbiotic Effects
Oligosaccharides from human or bovine milk selectively stimulate growth or metabolism of bacteria associated with the lower gastrointestinal tract of infants. Results from complex infant-type co-cultures point toward a possible synergistic effect of combining bovine milk oligosaccharides (BMO) and lactose (LAC) on enhancing the metabolism of Bifidobacterium longum subsp. longum and inhibition of Clostridium perfringens. We examine the interaction between B. longum subsp. longum and the commensal Parabacteroides distasonis, by culturing them in mono- and co-culture with different carbohydrates available. To understand the interaction between BMO and lactose on B. longum subsp. longum and test the potential postbiotic effect on C. perfringens growth and/or metabolic activity, we inoculated C. perfringens into fresh media and compared the metabolic changes to C. perfringens in cell-free supernatant from B. longum subsp. longum fermented media. In co-culture, B. longum subsp. longum benefits from P. distasonis (commensalism), especially in a lactose-rich environment. Furthermore, B. longum subsp. longum fermentation of BMO + LAC impaired C. perfringens’ ability to utilize BMO as a carbon source (potential postbiotic effect)
Background diet influences TMAO concentrations associated with red meat intake without influencing apparent hepatic TMAO-related activity in a porcine model
Red meat has been associated with an increased cardiovascular disease (CVD) risk, possibly through gut microbial-derived trimethylamine-N-oxide (TMAO). However, previous reports are conflicting, and influences from the background diet may modulate the impact of meat consumption. This study investigated the effect of red and white meat intake combined with two different background diets on urinary TMAO concentration and its association with the colon microbiome in addition to apparent hepatic TMAO-related activity. For 4 weeks, 32 pigs were fed chicken or red and processed meat combined with a prudent or western background diet. 1H NMR-based metabolomics analysis was conducted on urine samples and hepatic mRNA expression of TMAO-related genes determined. Lower urinary TMAO concentrations were observed after intake of red and processed meat when consumed with a prudent compared to a western background diet. In addition, correlation analyses between urinary TMAO concentrations and relative abundance of colon bacterial groups suggested an association between TMAO and specific bacterial taxa. Diet did not affect the hepatic mRNA expression of genes related to TMAO formation. The results suggest that meat-induced TMAO formation is regulated by mechanisms other than alterations at the hepatic gene expression level, possibly involving modulations of the gut microbiota
A manual-based family intervention for families living with acquired brain or spinal cord injury:A qualitative study of families’ experiences
Purpose: To explore families’ experiences of participating in a family intervention, targeting families living with the consequences of acquired brain injury (ABI) or spinal cord injury (SCI). Materials and methods: Individuals with ABI or SCI and their family members were recruited from a randomised controlled trial investigating the effectiveness of the manual-based family intervention, which consisted of eight weekly sessions. Semi-structured interviews were conducted with 16 families (n = 33). The data were analyzed through reflexive thematic analysis. Results: One central theme was developed “A sense of belonging together again”, describing the value of the reciprocal format of the family intervention, where individuals with ABI or SCI and their family members gained new insights into each other while building up their relationship. The central theme was supported by three additional themes: “Strengthened communication and emotional control”, “Acknowledging the changed life situation” and “Being seen as a whole person”. Conclusions: The family intervention supported the families to strengthen family cohesion and to be capable to manage the changed life situation. The findings emphasize the importance of a family-centered approach in neurorehabilitation, and how healthcare professionals play a significant role in facilitating families to achieve a balanced level of family cohesion.</p
Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis:3. Untargeted metabolomics
Intramammary infection leading to bovine mastitis is the leading disease problem affecting dairy cows and has marked effects on the milk produced by infected udder quarters. An experimental model of Streptococcus uberis mastitis has previously been investigated for clinical, immunological and pathophysiological alteration in milk, and has been the subject of peptidomic and quantitative proteomic investigation. The same sample set has now been investigated with a metabolomics approach using liquid chromatography and mass spectrometry. The analysis revealed over 3000 chromatographic peaks, of which 690 were putatively annotated with a metabolite. Hierarchical clustering analysis and principal component analysis demonstrated that metabolite changes due to S. uberis infection were maximal at 81 hours post challenge with metabolites in the milk from the resolution phase at 312 hours post challenge being closest to the pre-challenge samples. Metabolic pathway analysis revealed that the majority of the metabolites mapped to carbohydrate and nucleotide metabolism show a decreasing trend in concentration up to 81 hours post-challenge whereas an increasing trend was found in lipid metabolites and di-, tri- and tetra-peptides up to the same time point. The increase in these peptides coincides with an increase in larger peptides found in the previous peptidomic analysis and is likely to be due to protease degradation of milk proteins. Components of bile acid metabolism, linked to the FXR pathway regulating inflammation, were also increased. Metabolomic analysis of the response in milk during mastitis provides an essential component to the full understanding of the mammary gland’s response to infection
- …
