43,348 research outputs found

    Technical Rate of Substitution of Spectrum in Future Mobile Broadband Provisioning

    Full text link
    Dense deployment of base stations (BSs) and multi-antenna techniques are considered key enablers for future mobile networks. Meanwhile, spectrum sharing techniques and utilization of higher frequency bands make more bandwidth available. An important question for future system design is which element is more effective than others. In this paper, we introduce the concept of technical rate of substitution (TRS) from microeconomics and study the TRS of spectrum in terms of BS density and antenna number per BS. Numerical results show that TRS becomes higher with increasing user data rate requirement, suggesting that spectrum is the most effective means of provisioning extremely fast mobile broadband.Comment: 5 pages, 5 figures, conferenc

    How a single stretched polymer responds coherently to a minute oscillation in fluctuating environments: An entropic stochastic resonance

    Full text link
    Within the cell, biopolymers are often situated in constrained, fluid environments, e.g., cytoskeletal networks, stretched DNAs in chromatin. It is of paramount importance to understand quantitatively how they, utilizing their flexibility, optimally respond to a minute signal, which is, in general, temporally fluctuating far away from equilibrium. To this end, we analytically study viscoelastic response and associated stochastic resonance in a stretched single semi-flexible chain to an oscillatory force or electric field. Including hydrodynamic interactions between chain segments, we evaluate dynamics of the polymer extension in coherent response to the force or field. We find power amplification factor of the response at a noise-strength (temperature) can attain the maximum that grows as the chain length increases, indicative of an entropic stochastic resonance (ESR). In particular for a charged chain under an electric field, we find that the maximum also occurs at an optimal chain length, a new feature of ESR. The hydrodynamic interaction is found to enhance the power amplification, representing unique polymer cooperativity which the fluid background imparts despite its overdamping nature. For the slow oscillatory force, the resonance behavior is explained by the chain undulation of the longest wavelength. This novel ESR phenomenon suggests how a biopolymer self-organizes in an overdamping environment, utilizing its flexibility and thermal fluctuations

    Searches for Physics Beyond the Standard Model at CMS

    Full text link
    Recent results on searches for physics beyond the Standard Model at Large Hadron Collider are presented, based on early LHC data in proton-proton collisions at s=7\sqrt{s} = 7 TeV collected by the CMS experiment. Prospects of early SUSY searches at CMS are also outlined.Comment: 6 pages, Proceedings of Hadron Collider Physics Symposium, HCP 2010, Toront
    corecore