49 research outputs found
Results from the CDMS II Experiment
I report recent results and the status of the Cryogenic Dark Matter Search
(CDMS II) experiment at the Soudan Underground Laboratory in Minnesota, USA. A
blind analysis of data taken by 30 detectors between October 2006 and July 2007
found zero events consistent with WIMPs elastically scattering in our Ge
detectors. This resulted in an upper limit on the spin-independent,
WIMP-nucleon cross section of 6.6 x 10^-44 cm^2 (4.6 x 10^-44 cm^2 when
combined with our previous results) at the 90% C.L. for a WIMP of mass 60
GeV/c^2. In March 2009 data taking with CDMS II stopped in order to install the
first of 5 SuperTowers of detectors for the SuperCDMS Soudan project. Analysis
of data taken between August 2007 and March 2009 is ongoing.Comment: 5 pages, 4 figures, to appear in the proceedings of the TAUP09
conference (Rome, July 1st-5th 2009
Dark matter effective field theory scattering in direct detection experiments
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMWe examine the consequences of the effective field theory (EFT) of dark matter-nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter spaceThe authors gratefully acknowledge Liam Fitzpatrick, Wick Haxton, and Tim Tait for helpful conversations. This work is supported in part by the National Science Foundation, by the United States Department of Energy, by NSERC Canada, and by MultiDark (Spanish MINECO). Fermilab is operated by the Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359. SLAC is operated under Contract No. DE-AC02- 76SF00515 with the United States Department of Energ
Maximum likelihood analysis of low energy CDMS II germanium data
Artículo escrito por un elevado número de autores, sólo se referencian el primero, los autores que firman como Universidad Autónoma de Madrid y el grupo de colaboración en el caso de que aparezca en el artículoWe report on the results of a search for a Weakly Interacting Massive Particle (WIMP) signal in low-energy data of the Cryogenic Dark Matter Search experiment using a maximum likelihood analysis. A background model is constructed using geant4 to simulate the surface-event background from Pb210 decay-chain events, while using independent calibration data to model the gamma background. Fitting this background model to the data results in no statistically significant WIMP component. In addition, we perform fits using an analytic ad hoc background model proposed by Collar and Fields, who claimed to find a large excess of signal-like events in our data. We confirm the strong preference for a signal hypothesis in their analysis under these assumptions, but excesses are observed in both single- and multiple-scatter events, which implies the signal is not caused by WIMPs, but rather reflects the inadequacy of their background modelThis work is supported in part by the National Science Foundation, by the United States Department of Energy, by NSERC Canada, and by MultiDark (Spanish MINECO). Fermilab is operated by the Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359. SLAC is operated under Contract No. DE-AC02-76SF00515 with the United States Department of Energ
Demonstration of surface electron rejection with interleaved germanium detectors for dark matter searches
The SuperCDMS experiment in the Soudan Underground Laboratory searches for dark matter with a 9-kg array of cryogenic germanium detectors. Symmetric sensors on opposite sides measure both charge and phonons from each particle interaction, providing excellent discrimination between electron and nuclear recoils, and between surface and interior events. Surface event rejection capabilities were tested with two [superscript 210] Pb sources producing ∼130 beta decays/hr. In ∼800 live hours, no events leaked into the 8–115 keV signal region, giving upper limit leakage fraction 1.7 × 10[superscript −5] at 90% C.L., corresponding to < 0.6 surface event background in the future 200-kg SuperCDMS SNOLAB experiment.United States. Dept. of Energy (Contract No. DE-AC03-76SF00098)United States. Dept. of Energy (Contract No. DE-FG02-92ER40701)United States. Dept. of Energy (Contract No. DE-FG02-94ER40823)United States. Dept. of Energy (Contract No. DE-FG03-90ER40569)United States. Dept. of Energy (Contract No. DE-FG03-91ER40618)United States. Dept. of Energy (Contract No. DE-SC0004022)National Science Foundation (U.S.) (Grant No. AST-9978911)National Science Foundation (U.S.) (Grant No. NSF-0847342)National Science Foundation (U.S.) (Grant No. PHY-1102795)National Science Foundation (U.S.) (Grant No. NSF-1151869)National Science Foundation (U.S.) (Grant No. PHY-0542066)National Science Foundation (U.S.) (Grant No. PHY-0503729)National Science Foundation (U.S.) (Grant No. PHY-0503629)National Science Foundation (U.S.) (Grant No. PHY-0503641)National Science Foundation (U.S.) (Grant No. PHY-0504224)National Science Foundation (U.S.) (Grant No. PHY-0705052)National Science Foundation (U.S.) (Grant No. PHY-0801708)National Science Foundation (U.S.) (Grant No. PHY-0801712)National Science Foundation (U.S.) (Grant No. PHY-0802575)National Science Foundation (U.S.) (Grant No. PHY-0847342)National Science Foundation (U.S.) (Grant No. PHY-0855299)National Science Foundation (U.S.) (Grant No. PHY-0855525)National Science Foundation (U.S.) (Grant No. PHY-1205898
What can(not) be measured with ton-scale dark matter direct detection experiments
Direct searches for dark matter have prompted in recent years a great deal of
excitement within the astroparticle physics community, but the compatibility
between signal claims and null results of different experiments is far from
being a settled issue. In this context, we study here the prospects for
constraining the dark matter parameter space with the next generation of
ton-scale detectors. Using realistic experimental capabilities for a wide range
of targets (including fluorine, sodium, argon, germanium, iodine and xenon),
the role of target complementarity is analysed in detail while including the
impact of astrophysical uncertainties in a self-consistent manner. We show
explicitly that a multi-target signal in future direct detection facilities can
determine the sign of the ratio of scalar couplings , but not its
scale. This implies that the scalar-proton cross-section is left essentially
unconstrained if the assumption is relaxed. Instead, we find that
both the axial-proton cross-section and the ratio of axial couplings
can be measured with fair accuracy if multi-ton instruments using sodium and
iodine will eventually come online. Moreover, it turns out that future direct
detection data can easily discriminate between elastic and inelastic
scatterings. Finally, we argue that, with weak assumptions regarding the WIMP
couplings and the astrophysics, only the dark matter mass and the inelastic
parameter (i.e. mass splitting) may be inferred from the recoil spectra --
specifically, we anticipate an accuracy of tens of GeV (tens of keV) in the
measurement of the dark matter mass (inelastic parameter).Comment: 31 pages, 7 figures, 7 table
Constraints on lightly ionizing particles from CDMSlite
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMThe Cryogenic Dark Matter Search low ionization threshold experiment (CDMSlite) achieved efficient detection of very small recoil energies in its germanium target, resulting in sensitivity to lightly ionizing particles (LIPs) in a previously unexplored region of charge, mass, and velocity parameter space. We report first direct-detection limits calculated using the optimum interval method on the vertical intensity of cosmogenically produced LIPs with an electric charge smaller than e / (3 × 105), as well as the strongest limits for charge ≤ e / 160, with a minimum vertical intensity of 1.36 × 10−7 cm−2 s−1 sr−1 at charge e /160. These results apply over a wide range of LIP masses (5 MeV / c2 to 100 TeV / c2) and cover a wide range of βγ values (0.1–106), thus excluding nonrelativistic LIPs with βγ as small as 0.1 for the first tim
Phenomenology of GUT-less Supersymmetry Breaking
We study models in which supersymmetry breaking appears at an intermediate
scale, M_{in}, below the GUT scale. We assume that the soft
supersymmetry-breaking parameters of the MSSM are universal at M_{in}, and
analyze the morphology of the constraints from cosmology and collider
experiments on the allowed regions of parameter space as M_{in} is reduced from
the GUT scale. We present separate analyses of the (m_{1/2},m_0) planes for
tan(beta)=10 and tan(beta)=50, as well as a discussion of non-zero trilinear
couplings, A_0. Specific scenarios where the gaugino and scalar masses appear
to be universal below the GUT scale have been found in mirage-mediation models,
which we also address here. We demand that the lightest neutralino be the LSP,
and that the relic neutralino density not conflict with measurements by WMAP
and other observations. At moderate values of M_{in}, we find that the allowed
regions of the (m_{1/2},m_0) plane are squeezed by the requirements of
electroweak symmetry breaking and that the lightest neutralino be the LSP,
whereas the constraint on the relic density is less severe. At very low M_{in},
the electroweak vacuum conditions become the dominant constraint, and a
secondary source of astrophysical cold dark matter would be necessary to
explain the measured relic density for nearly all values of the soft
SUSY-breaking parameters and tan(beta). We calculate the neutralino-nucleon
cross sections for viable scenarios and compare them with the present and
projected limits from direct dark matter searches.Comment: 35 pages, 9 figures; typos corrected, references adde
Collider and Dark Matter Phenomenology of Models with Mirage Unification
We examine supersymmetric models with mixed modulus-anomaly mediated SUSY
breaking (MM-AMSB) soft terms which get comparable contributions to SUSY
breaking from moduli-mediation and anomaly-mediation. The apparent (mirage)
unification of soft SUSY breaking terms at Q=mu_mir not associated with any
physical threshold is the hallmark of this scenario. The MM-AMSB structure of
soft terms arises in models of string compactification with fluxes, where the
addition of an anti-brane leads to an uplifting potential and a de Sitter
universe, as first constructed by Kachru {\it et al.}. The phenomenology mainly
depends on the relative strength of moduli- and anomaly-mediated SUSY breaking
contributions, and on the Higgs and matter field modular weights, which are
determined by the location of these fields in the extra dimensions. We
delineate the allowed parameter space for a low and high value of tan(beta),
for a wide range of modular weight choices. We calculate the neutralino relic
density and display the WMAP-allowed regions. We show the reach of the CERN LHC
and of the International Linear Collider. We discuss aspects of MM-AMSB models
for Tevatron, LHC and ILC searches, muon g-2 and b->s \gamma branching
fraction. We also calculate direct and indirect dark matter detection rates,
and show that almost all WMAP-allowed models should be accessible to a
ton-scale noble gas detector. Finally, we comment on the potential of colliders
to measure the mirage unification scale and modular weights in the difficult
case where mu_mir>>M_GUT.Comment: 34 pages plus 42 EPS figures; version with high resolution figures is
at http://www.hep.fsu.edu/~bae
Neutralino Dark Matter in Mirage Mediation
We study the phenomenology of neutralino dark matter (DM) in mirage mediation
scenario of supersymmetry breaking which results from the moduli stabilization
in some string/brane models. Depending upon the model parameters, especially
the anomaly to modulus mediation ratio determined by the moduli stabilization
mechanism, the nature of the lightest supersymmetric particle (LSP) changes
from Bino-like neutralino to Higgsino-like one via Bino-Higgsino mixing region.
For the Bino-like LSP, the standard thermal production mechanism can give a
right amount of relic DM density through the stop/stau-neutralino
coannihilation or the pseudo-scalar Higgs resonance process. We also examine
the prospect of direct and indirect DM detection in various parameter regions
of mirage mediation. Neutralino DM in galactic halo might be detected by near
future direct detection experiments in the case of Bino-Higgsino mixed LSP. The
gamma ray flux from Galactic Center might be detectable also if the DM density
profile takes a cuspy shape.Comment: One reference adde
