20 research outputs found
Stock Versus CAD/CAM Customized Zirconia Implant Abutments - Clinical and Patient-Based Outcomes in a Randomized Controlled Clinical Trial
BackgroundSingle-tooth replacement often requires a prefabricated dental implant and a customized crown. The benefits of individualization of the abutment remain unclear.PurposeThis randomized controlled clinical trial aims to study potential benefits of individualization of zirconia implant abutments with respect to preservation of marginal bone level and several clinical and patient-based outcome measures.Material and MethodsFifty participants with a missing premolar were included and randomly assigned to standard (ZirDesign, DentsplySirona Implants, Molndal, Sweden) or computer aided design/computer aided manufacturing (CAD/CAM) customized (Atlantis, DentsplySirona Implants, Molndal, Sweden) zirconia abutment therapy. Peri-implant bone level (primary outcome), Plaque-index, calculus formation, bleeding on probing, gingiva index, probing pocket depth, recession, appearance of soft tissues and patients' contentment were assessed shortly after placement and one year later.ResultsNo implants were lost and no complications related to the abutments were observed. Statistically significant differences between stock and CAD/CAM customized zirconia abutments could not be demonstrated for any of the operationalized variables.ConclusionThe use of a CAD/CAM customized zirconia abutment in single tooth replacement of a premolar is not associated with an improvement in clinical performance or patients' contentment when compared to the use of a stock zirconia abutment.</p
The influence of peri-implant mucosal level on the satisfaction with anterior maxillary implants
Cone-Beam Computed Tomographic Evidence of the Association Between Periodontal Bone Loss and Mucosal Thickening of the Maxillary Sinus
Oral Fluid Biomarkers for Peri-Implantitis: A Scoping Review
Peri-implantitis, a prevalent complication in dental implant therapy, poses a significant threat to long-term implant success. The identification of reliable biomarkers for the early detection and monitoring of peri-implantitis is crucial for timely intervention and improved treatment outcomes. Salivary and peri-implant sulcular fluid (PISF) biomarkers have become promising diagnostic tools in the field of implant dentistry. This scoping review aims to explore current studies in the literature on salivary and PISF biomarkers for peri-implantitis. A systematic search was conducted on 2 databases (PubMed and Scopus) to identify relevant studies published up to January 2023. A total of 86 articles were included, which underwent data extraction and analysis. Several biomarkers have been investigated in salivary and PISF samples for association with peri-implantitis. Investigations included a wide range of biomarkers, including inflammatory markers, matrix metalloproteinases and bone loss markers. The findings suggested that certain salivary and PISF biomarkers demonstrated potential in distinguishing healthy peri-implant conditions from peri-implantitis. Elevated levels of proinflammatory cytokines, such as interleukin-1β (IL-1β) and interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), and matrix metalloproteinases, have been consistently associated with peri-implantitis. Additionally, alterations in bone loss markers have shown potential as indicators of disease progression and treatment response. In conclusion, this scoping review provides an overview of current knowledge on salivary and PISF biomarkers for peri-implantitis. The identified biomarkers are promising as noninvasive diagnostic tools for early detection, monitoring, and personalised management of peri-implantitis. Future studies should focus on establishing standardised protocols and conducting well-designed clinical trials to validate the diagnostic accuracy and clinical relevance of these biomarkers
Effect of Mechanical Force Stress on the Inflammatory Response in Human Periodontal Ligament Cells
Human periodontal ligament (hPDL) is continuously exposed to mechanical forces that can induce inflammatory responses in resident stem cells (hPDLSCs). Here, we review the impact of mechanical force on hPDLSCs, focusing on the activation of inflammatory cytokines and related signalling pathways, which subsequently influence periodontal tissue remodelling. The effects of various mechanical forces, including compressive, shear, and tensile forces, on hPDLSCs are discussed. The review highlights the role of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α in mediating inflammatory responses, as well as the counteracting effects of anti-inflammatory cytokines like IL-4 and IL-10. Additionally, we underscore the involvement of toll-like receptors (TLRs), particularly TLR4, in transducing mechanical stress signals and modulating cytokine production. This review demonstrates that hPDLSCs respond to different mechanical forces with specific gene expression changes that direct inflammatory and bone remodelling signals, leading to increased osteoblast and osteoclast activity. Moreover, hPDLSCs, together with contiguous hPDL cells, respond to various mechanical forces by regulating the immune function of several immune cells. This complex relationship between the mechanical force stress, inflammation, and the cellular response in hPDLSCs warrants further research to develop therapeutic strategies for periodontal and related diseases
Comparison of clinical values between cone beam computed tomography and conventional intraoral radiography in periodontal and infrabony defect assessment
Evaluating Surface Properties and Cellular Responses to Surface-Treated Different Triple Periodic Minimal Surface L-PBF Ti6Al4V Lattices for Biomedical Devices
Triple periodic minimal surface lattices have been introduced to dental and medical devices. Numerous designs of these porous structures have been proposed, but the impact of the surface properties of the different topographic lattices are not fully understood. So, this study aimed to examine the cellular and inflammatory responses to different lattice designs, including strut-based and surface-based lattices. Human osteoblasts, human umbilical vein endothelial cells, and monocytes were used to evaluate cell proliferation, osteogenic differentiation, and inflammatory response on lattices after surface treatment strategies. Post-surface treatment of chemical etching, in addition to improving the surface roughness by removing some adhered metal powder, also modulated the surface energy. The lattice design had no significant impact on cell proliferation, but higher cell proliferation was found in post-surface treated lattices, regardless of topographic design. For angiogenesis, there was no difference in the release of pro-angiogenic growth factors between topographic designs or post-surface treatment groups. Moreover, lattices with the post-surface treatment were prone to have a lower inflammation phenotype when compared to an as-printed lattice, though not in a significant manner. This study implies that different topographic lattice designs may not have a major impact on bone ingrowth; nevertheless, post-surface treatment and surface properties of lattice may have an influence on a macrophage-induced inflammatory response
Indirect Immobilised Jagged-1 Enhances Matrisome Proteins Associated with Osteogenic Differentiation of Human Dental Pulp Stem Cells: A Proteomic Study
The indirect immobilisation of Jagged-1 (Jagged-1) promoted osteogenic differentiation of human dental pulp cells (hDPs). Furthermore, the analysis of the Reactome pathway of RNA sequencing data indicates the upregulated genes involved with the extracellular matrix (ECM). Hence, our objective was to investigate the effects of Jagged-1 on proteomic profiles of human dental pulp stem cells (hDPSC). hDPSCs were cultured on the surface coated with human IgG Fc fragment (hFc) and the surface coated with rhJagged1/Fc recombinant protein-coated surface. Cells were differentiated to the osteogenic lineage using an osteogenic differentiation medium (OM) for 14 days, and cells cultured in a growth medium were used as a control. The protein component of the cultured cells was extracted into the cytosol, membrane, nucleus, and cytoskeletal compartment. Subsequently, the proteomic analysis was performed using liquid chromatography–tandem mass spectrometry (LC-MS). Metascape gene list analysis reported that Jagged-1 stimulated the expression of the membrane trafficking protein (DOP1B), which can indirectly improve osteogenic differentiation. hDPSCs cultured on Jagged-1 surface under OM condition expressed COL27A1, MXRA5, COL7A1, and MMP16, which played an important role in osteogenic differentiation. Furthermore, common matrisome proteins of all cellular components were related to osteogenesis/osteogenic differentiation. Additionally, the gene ontology categorised by the biological process of cytosol, membrane, and cytoskeleton compartments was associated with the biomineralisation process. The gene ontology of different culture conditions in each cellular component showed several unique gene ontologies. Remarkably, the Jagged-1_OM culture condition showed the biological process related to odontogenesis in the membrane compartment. In conclusion, the Jagged-1 induces osteogenic differentiation could, mainly through the regulation of protein in the membrane compartment
