181 research outputs found

    Overexpression of Pear (Pyrus pyrifolia) CAD2 in Tomato Affects Lignin Content

    Get PDF
    PpCAD2 was originally isolated from the ‘Wangkumbae’ pear (Pyrus pyrifolia Nakai), and it encodes for cinnamyl alcohol dehydrogenase (CAD), which is a key enzyme in the lignin biosynthesis pathway. In order to verify the function of PpCAD2, transgenic tomato (Solanum lycopersicum) ‘Micro-Tom’ plants were generated using over-expression constructs via the agrobacterium-mediated transformation method. The results showed that the PpCAD2 over-expression transgenic tomato plant had a strong growth vigor. Furthermore, these PpCAD2 over-expression transgenic tomato plants contained a higher lignin content and CAD enzymatic activity in the stem, leaf and fruit pericarp tissues, and formed a greater number of vessel elements in the stem and leaf vein, compared to wild type tomato plants. This study clearly indicated that overexpressing PpCAD2 increased the lignin deposition of transgenic tomato plants, and thus validated the function of PpCAD2 in lignin biosynthesis

    PpNAC187 Enhances Lignin Synthesis in ‘Whangkeumbae’ Pear (Pyrus pyrifolia) ‘Hard-End’ Fruit

    Get PDF
    A disorder in pears that is known as ‘hard-end’ fruit affects the appearance, edible quality, and market value of pear fruit. RNA-Seq was carried out on the calyx end of ‘Whangkeumbae’ pear fruit with and without the hard-end symptom to explore the mechanism underlying the formation of hard-end. The results indicated that the genes in the phenylpropanoid pathway affecting lignification were up-regulated in hard-end fruit. An analysis of differentially expressed genes (DEGs) identified three NAC transcription factors, and RT-qPCR analysis of PpNAC138, PpNAC186, and PpNAC187 confirmed that PpNAC187 gene expression was correlated with the hard-end disorder in pear fruit. A transient increase in PpNAC187 was observed in the calyx end of ‘Whangkeumbae’ fruit when they began to exhibit hard-end symptom. Concomitantly, the higher level of PpCCR and PpCOMT transcripts was observed, which are the key genes in lignin biosynthesis. Notably, lignin content in the stem and leaf tissues of transgenic tobacco overexpressing PpNAC187 was significantly higher than in the control plants that were transformed with an empty vector. Furthermore, transgenic tobacco overexpressing PpNAC187 had a larger number of xylem vessel elements. The results of this study confirmed that PpNAC187 functions in inducing lignification in pear fruit during the development of the hard-end disorder. View Full-Tex

    Identification of necroptosis-associated mRNA biomarkers in kidney clear cell carcinoma

    Get PDF
    IntroductionKidney clear cell carcinoma (KIRC) is the most common subtype of renal malignancy with a high mortality rate. It is difficult to treat and often leads to death due to its genomic heterogeneity, metastatic nature, and limited effectiveness of targeted and immunotherapies. Recent studies showed that the progression of KIRC is frequently accompanied by significant changes in necroptosis while these studies were limited by small gene sets, which increases the risk of missing low-expressed yet important genes.MethodsThis study focused on necroptosis-associated genes within the context of KIRC and performed a complete closed-loop studies by gene screening, gene expression analysis, model validation and experimental translation.ResultsAmong screened nine core biomarkers (RIPK1, RIPK3, MLKL, CASP8, ZBP1, TLR3, PYGL, TRPM7, PGAM5), CASP8 and TRPM7 were identified as new potential biomarkers. The predictive performance of risk prognostic model for 5-year survival (AUC: 0.77 and 0.89 in training and independent/external validation cohort) outperformed prior studies by 5.5% and 17.1%, respectively. A more pronounced immune response was found with high-risk cohort, underscoring the immunosuppressive properties of tumor immune microenvironments, which evidenced by increased immune cell infiltration and elevated immunogenicity. Drug sensitivity analysis revealed that doxorubicin could serve as a promising therapeutic agent for KIRC. Furthermore, BFTC909 and CAL54 were identified as the most suitable cell lines for in vitro experimental translation, and highlighting three functionally significant target genes (CASP8, PGAM5, and CPT2).ConclusionThis study offers multi-dimensional data that support novel mechanistic investigations and provide valuable insights for developing precision immunotherapy strategies in KIRC

    Physiological and transcriptomic analysis reveal the crucial factors in heat stress response of red raspberry ‘Polka’ seedlings

    Get PDF
    With global climate warming, recurring extreme heat and high temperatures irreversibly damage plants. Raspberries, known for their nutritional and medicinal value, are in high demand worldwide. Thus, it is important to study how high-temperature stress (HTS) affects raspberries. The physiological and biochemical responses and molecular genetic mechanisms of raspberry leaves to different HTS treatments were investigated: mild high temperature at 35°C (HT35), severe high temperature at 40°C (HT40), and the control at room temperature of 25°C (CK). The physiological results suggested that leaves in both the 35°C and 40°C treatments showed maximum relative conductivity at 4 d of stress, increasing by 28.54% and 43.36%, respectively, compared to CK. Throughout the stress period (0–4 d), malondialdehyde (MDA) and soluble protein contents of raspberry leaves increased under HT35 and HT40 treatments, while soluble sugar content first decreased and then increased. Catalase (CAT) activity increased, superoxide dismutase (SOD) activity first increased and then decreased, and peroxidase (POD) activity gradually decreased. Photosynthetic and fluorescence responses of raspberry leaves showed the most severe impairment after 4 d of stress. Transcriptomics results revealed significant alterations in 42 HSP family genes, two SOD-related differentially expressed genes (DEGs), 25 POD-related DEGs, three CAT-related DEGs, and 38 photosynthesis-related DEGs under HTS. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these DEGs were mainly enriched in photosynthesis-antenna proteins, pentose and glucuronide interconversion, phenylpropane biosynthesis, and indole alkaloid biosynthesis. HTS induced excessive ROS accumulation in raspberry leaves, causing oxidative damage in plant cells and subsequently reducing photosynthesis in raspberry leaves. This reduction in photosynthesis, in turn, affects photosynthetic carbon fixation and starch and sucrose metabolism, which, combined with phenol propane biosynthesis, mitigates the HTS-induced damage

    ROR1 Is Expressed in Human Breast Cancer and Associated with Enhanced Tumor-Cell Growth

    Get PDF
    Receptor-tyrosine-kinase-like orphan receptor 1 (ROR1) is expressed during embryogenesis and by certain leukemias, but not by normal adult tissues. Here we show that the neoplastic cells of many human breast cancers express the ROR1 protein and high-level expression of ROR1 in breast adenocarcinoma was associated with aggressive disease. Silencing expression of ROR1 in human breast cancer cell lines found to express this protein impaired their growth in vitro and also in immune-deficient mice. We found that ROR1 could interact with casein kinase 1 epsilon (CK1ε) to activate phosphoinositide 3-kinase-mediated AKT phosphorylation and cAMP-response-element-binding protein (CREB), which was associated with enhanced tumor-cell growth. Wnt5a, a ligand of ROR1, could induce ROR1-dependent signaling and enhance cell growth. This study demonstrates that ROR1 is expressed in human breast cancers and has biological and clinical significance, indicating that it may be a potential target for breast cancer therapy

    The Impact of Narrative Mode on the Theme and the Level of Positive Processing of Psychobiography

    No full text

    Workshop held on large-scale geophysical laboratory model site in China

    No full text
    corecore