11 research outputs found
P2Y12 receptor modulation of ADP‐evoked intracellular Ca2+ signalling in THP‐1 human monocytic cells
Background and purpose: The Gi‐coupled, ADP‐activated P2Y12 receptor is well characterised as playing a key role in platelet activation via crosstalk with P2Y1 in ADP‐evoked intracellular Ca2+ response. There is limited knowledge on the role of P2Y12 in ADP‐evoked Ca2+ responses in other blood cells. Here we investigate the role of P2Y12 receptor activation in modulation of ADP‐evoked Ca2+ responses in human THP‐1 monocytic cells. Experimental approach: A combination of intracellular Ca2+ measurements, RT‐PCR, immunocytochemistry, leukocyte isolation and siRNA‐mediated gene knockdown were used to identify the role of P2Y12 receptor activation. Key results: ADP‐evoked intracellular Ca2+ responses (EC50 2.7 M) in THP‐1 cells were abolished by inhibition of phospholipase C (U73122) or sarco/endoplasmic reticulum Ca2+‐ATPase (thapsigargin). Loss of ADP‐evoked Ca2+ responses following treatment with MRS2578 (IC50 200 nM) revealed a major role for P2Y6 in mediating ADP‐evoked Ca2+ responses. ADP‐evoked responses were attenuated either with pertussis toxin treatment, or P2Y12 inhibition with two chemically distinct antagonists (ticagrelor, IC50 5.3 M; PSB‐0739, IC50 5.6 M). ADP‐evoked responses were suppressed following siRNA‐mediated P2Y12 gene knockdown. The inhibitory effects of P2Y12 antagonists were fully reversed following adenylate cyclase inhibition (SQ22536). P2Y12 receptor expression was confirmed in freshly isolated human CD14+ monocytes. Conclusion and implications: Taken together, these data suggest that P2Y12 activation positively regulates P2Y6‐mediated intracellular Ca2+ signalling through suppression of adenylate cyclase activity in human monocytic cells
P2Y1 and P2Y12 receptor cross-talk in calcium signalling: Evidence from nonstarved and long-term serum-deprived glioma C6 cells
The current work presents results of experiments on the calcium response evoked by the stimulation by extracellular nucleotides occurring in control, nonstarved glioma C6 cells and in cells after long-term (96 h) serum starvation. Three nucleotide receptors were studied: P2Y1, P2Y2 and P2Y12. Two of them, P2Y1 and P2Y2, directly stimulate calcium response. The protein level of the P2Y2 receptor did not change during the serum starvation, while P2Y1 protein level fell dramatically. Observed changes in the calcium response generated by P2Y1 are directly correlated with the receptor protein level as well as with the amount of calcium present in the intracellular calcium stores, partially depleted during starvation process. The third receptor, P2Y12, did not directly evoke calcium response, however it is activated by the same ligand as P2Y1. The experiments with AR-C69941MX, the P2Y12-specific antagonist, indicated that in control and serum-starved cells, calcium response evoked by P2Y1 receptor is potentiated by the activity of P2Y12-dependent signaling pathways. This potentiation may be mediated by P2Y12 inhibitory effect on the plasma membrane calcium pump. The calcium influx enhanced by the cooperation of P2Y1 and P2Y12 receptor activity directly depends on the capacitative calcium entrance mechanism
Rearrangement of the endoplasmic reticulum and calcium transient formation: The computational approach
Effect of deicing salts on urban soils and health status of roadside trees in the Opole region
PERK (eIF2α kinase) is required to activate the stress-activated MAPKs and induce the expression of immediate-early genes upon disruption of ER calcium homoeostasis
The eIF2α (eukaryotic initiation factor-2α) kinase PERK (doublestranded RNA-activated protein kinase-like ER kinase) is essential for the normal function of highly secretory cells in the pancreas and skeletal system, as well as the UPR (unfolded protein response) in mammalian cells. To delineate the regulatory machinery underlying PERK-dependent stress-responses, gene profiling was employed to assess global changes in gene expression in PERK-deficient MEFs (mouse embryonic fibroblasts). Several IE (immediate-early) genes, including c-myc, c-jun, egr-1 (early growth response factor-1), and fra-1 (fos-related antigen-1), displayed PERK-dependent expression in MEFs upon disruption of calcium homoeostasis by inhibiting the ER (endoplasmic reticulum) transmembrane SERCA (sarcoplasmic/ER Ca(2+)-ATPase) calcium pump. Induction of c-myc and egr-1 by other reagents that elicit the UPR, however, showed variable dependence upon PERK. Induction of c-myc expression by thapsigargin was shown to be linked to key signalling enzymes including PLC (phospholipase C), PI3K (phosphatidylinositol 3-kinase) and p38 MAPK (mitogen-activated protein kinase). Analysis of the phosphorylated status of major components in MAPK signalling pathways indicated that thapsigargin and DTT (dithiothreitol) but not tunicamycin could trigger the PERK-dependent activation of JNK (c-Jun N-terminal kinase) and p38 MAPK. However, activation of JNK and p38 MAPK by non-ER stress stimuli including UV irradiation, anisomycin, and TNF-α (tumour necrosis factor-α) was found to be independent of PERK. PERK plays a particularly important role in mediating the global cellular response to ER stress that is elicited by the depletion of calcium from the ER. We suggest that this specificity of PERK function in the UPR is an extension of the normal physiological function of PERK to act as a calcium sensor in the ER
Interaction of purinergic receptors with GPCRs, ion channels, tyrosine kinase and steroid hormone receptors orchestrates cell function
Extracellular purines and pyrimidines have emerged as key regulators of a wide range of physiological and pathophysiological cellular processes acting through P1 and P2 cell surface receptors. Increasing evidence suggests that purinergic receptors can interact with and/or modulate the activity of other classes of receptors and ion channels. This review will focus on the interactions of purinergic receptors with other GPCRs, ion channels, receptor tyrosine kinases, and steroid hormone receptors. Also, the signal transduction pathways regulated by these complexes and their new functional properties are discussed
