7,865 research outputs found

    Impact of large-scale dynamic versus thermodynamic climate conditions on contrasting tropical cyclone genesis frequency

    Get PDF
    Significant advances have been made in understanding the key climate factors responsible for tropical cyclone (TC) activity, yet any theory that estimates likelihood of observed TC formation rates from mean climate states remains elusive. The present study investigates how the extremes of observed TC genesis (TCG) frequency during peak TC seasons are interrelated with distinct changes in the large-scale climate conditions over different ocean basins using the global International Best Track Archive for Climate Stewardship (IBTrACS) dataset and ERA-Interim for the period 1979–2014. Peak TC seasons with significantly high and low TCG frequency are identified for five major ocean basins, and their substantial spatial changes in TCG are noted with regionally distinct differences. To explore the possible climate link behind such changes, a suite of potentially relevant dynamic and thermodynamic climate conditions is analyzed. Results indicate that the observed changes in extreme TCG frequency are closely linked with distinct dominance of specific dynamic and thermodynamic climate conditions over different regions. While the combined influences of dynamic and thermodynamic climate conditions are found to be necessary for modulating TC formation rate over the North Atlantic, eastern Pacific, and southern Indian Oceans, significant changes in large-scale dynamic conditions appear to solely control the TCG frequency over the western Pacific and South Pacific basins. Estimation of the fractional changes in genesis-weighted climate conditions also indicates the coherent but distinct competing effects of different climate conditions on TCG frequency. The present study further points out the need for revising the existing genesis indices for estimating TCG frequency over individual basins

    Closure tests for mean field magnetohydrodynamics using a self consistent reduced model

    Full text link
    The mean electromotive force and alpha effect are computed for a forced turbulent flow using a simple nonlinear dynamical model. The results are used to check the applicability of two basic analytic ansatze of mean-field magnetohydrodynamics - the second order correlation approximation (SOCA) and the tau approximation. In the numerical simulations the effective Reynolds number Re is 2-20, while the magnetic Prandtl number varies from 0.1 to 10710^{7}. We present evidence that the τ\tau approximation may be appropriate in dynamical regimes where there is a small-scale dynamo. Catastrophic quenching of the α\alpha effect is found for high PmP_{m}. Our results indicate that for high PmP_{m} SOCA gives a very large value of the α\alpha coefficient compared with the ``exact'' solution. The discrepancy depends on the properties of the random force that drives the flow, with a larger difference occuring for δ\delta-correlated force compared with that for a steady random force.Comment: submitted to MNRA

    Sub-doppler two-photon spectrum of asymmetric rotor molecules

    Get PDF
    The Doppler-free two-photon excitation spectrum of the qqQ branch of the 1410 vibrational band of the S1(1B2u) ← S0(1A1g) transition of benzene-d1 has been recorded using a cw single-mode dye laser coupled to an external concentric resonator. The spectrum has been analysed using a non-rigid Watson Hamiltonian. More than 200 lines with J up to 20 have been assigned and the rotational constants which best reproduce the spectrum are A1v = 0.181435, B1v = 0.169990, C1v = 0.089055 cm−1. The Ka = odd lines of the qqQ5(J) subbranch show small and quite regular perturbations of 60 ± 5 MHz which are probably due to a coupling to another vibrational state of the S1 manifold

    Origin of the butterfly magnetoresistance in a Dirac nodal-line system

    Full text link
    We report a study on the magnetotransport properties and on the Fermi surfaces (FS) of the ZrSi(Se,Te) semimetals. Density Functional Theory (DFT) calculations, in absence of spin orbit coupling (SOC), reveal that both the Se and the Te compounds display Dirac nodal lines (DNL) close to the Fermi level εF\varepsilon_F at symmorphic and non-symmorphic positions, respectively. We find that the geometry of their FSs agrees well with DFT predictions. ZrSiSe displays low residual resistivities, pronounced magnetoresistivity, high carrier mobilities, and a butterfly-like angle-dependent magnetoresistivity (AMR), although its DNL is not protected against gap opening. As in Cd3_3As2_2, its transport lifetime is found to be 102^2 to 103^3 times larger than its quantum one. ZrSiTe, which possesses a protected DNL, displays conventional transport properties. Our evaluation indicates that both compounds most likely are topologically trivial. Nearly angle-independent effective masses with strong angle dependent quantum lifetimes lead to the butterfly AMR in ZrSiSe

    Reverse undercompressive shock structures in driven thin film flow

    Full text link
    We show experimental evidence of a new structure involving an undercompressive and reverse undercompressive shock for draining films driven by a surface tension gradient against gravity. The reverse undercompressive shock is unstable to transverse perturbations while the leading undercompressive shock is stable. Depending on the pinch-off film thickness, as controlled by the meniscus, either a trailing rarefaction wave or a compressive shock separates from the reverse undercompressive shock

    The universe dynamics in the tachyon cosmology with non-minimal coupling to matter

    Full text link
    Recently, the tachyon cosmology has been represented as dark energy model to support the current acceleration of the universe without phantom crossing. In this paper, we study the dynamics of the tachyon cosmology in which the field plays the role of tachyon field and also non--minimally coupled to the matter lagrangian. The model shows current universe acceleration and also phantom crossing in the future. Two cosmological tests are also performed to validate the model; the difference in the distance modulus and the model independent Cosmological Redshift Drift (CRD) test.Comment: 14 pages, 11 figure

    Kinematic alpha effect in isotropic turbulence simulations

    Full text link
    Using numerical simulations at moderate magnetic Reynolds numbers up to 220 it is shown that in the kinematic regime, isotropic helical turbulence leads to an alpha effect and a turbulent diffusivity whose values are independent of the magnetic Reynolds number, \Rm, provided \Rm exceeds unity. These turbulent coefficients are also consistent with expectations from the first order smoothing approximation. For small values of \Rm, alpha and turbulent diffusivity are proportional to \Rm. Over finite time intervals meaningful values of alpha and turbulent diffusivity can be obtained even when there is small-scale dynamo action that produces strong magnetic fluctuations. This suggests that small-scale dynamo-generated fields do not make a correlated contribution to the mean electromotive force.Comment: Accepted for publication in MNRAS Letter

    Thin-shell wormholes from charged black holes in generalized dilaton-axion gravity

    Full text link
    This paper discusses a new type of thin-shell wormhole constructed by applying the cut-and-paste technique to two copies of a charged black hole in generalized dilaton-axion gravity, which was inspired by low-energy string theory. After analyzing various aspects of this thin-shell wormhole, we discuss its stability to linearized spherically symmetric perturbations.Comment: Minor changes, 6 pages, 4 figures. Accepted for publication in Gen. Rel. Gra
    corecore