18 research outputs found
CBX5 Loss Drives EGFR Inhibitor Resistance and Results in Therapeutically Actionable Vulnerabilities in Lung Cancer
Although epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFRi) are approved for treating EGFR-mutant lung adenocarcinoma (LUAD), emergence of acquired resistance limits their clinical benefits. Several mechanisms for acquired resistance to EGFRi in LUAD have been identified; however, the molecular basis for this resistance remains unknown in ~30% of LUAD. Chromatin and DNA modifiers and their regulators play important roles in determining response to anticancer therapies. Therefore, to identify nongenetic mechanisms of EGFRi resistance in LUAD, we performed an epigenome-wide shRNA screen targeting 363 human epigenetic regulator genes. This screen identified loss of the transcriptional repressor chromobox homolog 5 (CBX5) as a driver of EGFRi resistance in EGFR-mutant LUAD. Loss of CBX5 confers resistance to multiple EGFRi in both cell culture and mice. We found that CBX5 loss in EGFR-mutant LUAD cells leads to increased expression of the transcription factor E2F1, which in turn stimulates expression of the antiapoptotic gen
Measurement of Natural Killer Cell-Mediated Cytotoxicity and Migration in the Context of Hepatic Tumor Cells
Measurement of Natural Killer Cell-Mediated Cytotoxicity and Migration in the Context of Hepatic Tumor Cells
Co-targeting of specific epigenetic regulators in combination with CDC7 potently inhibit melanoma growth
Betacellulin promotes tumor development and EGFR mutant lung cancer growth by stimulating the EGFR pathway and suppressing apoptosis
Disruptor of telomeric silencing 1-like promotes ovarian cancer tumor growth by stimulating pro-tumorigenic metabolic pathways and blocking apoptosis
ABSTRACTOvarian cancer is the leading cause of gynecological malignancy-related deaths. Current therapies for ovarian cancer do not provide meaningful and sustainable clinical benefits, highlighting the need for new therapies. We show that the histone H3K79 methyltransferase disruptor of telomeric silencing 1-like (DOT1L) is overexpressed in ovarian cancer and that a higher level of DOT1L expression correlates with shorter progression-free and overall survival (OS). Pharmacological inhibition of DOT1L (EPZ-5676, EPZ004777, and SGC0946) or genetic inhibition of DOT1L attenuates the growth of ovarian cancer cells in cell culture and in a mouse xenograft model of ovarian cancer. Transcriptome-wide mRNA expression profiling shows that DOT1L inhibition results in the downregulation of genes involved in cellular biosynthesis pathways and the upregulation of proapoptotic genes. Consistent with the results of transcriptome analysis, the unbiased large-scale metabolomic analysis showed reduced levels of several metabolites of the amino acid and nucleotide biosynthesis pathways after DOT1L inhibition. DOT1L inhibition also resulted in the upregulation of the NKG2D ligand ULBP1 and subsequent increase in natural killer (NK) cell-mediated ovarian cancer eradication. Collectively, our results demonstrate that DOT1L promotes ovarian cancer tumor growth by regulating apoptotic and metabolic pathways as well as NK cell-mediated eradication of ovarian cancer and identifies DOT1L as a new pharmacological target for ovarian cancer therapy.</jats:p
EZH2 inhibits NK cell–mediated antitumor immunity by suppressing CXCL10 expression in an HDAC10-dependent manner
Significance
Hepatocellular carcinoma (HCC), a type of liver cancer, has a poor 5-y survival rate and current therapies provide only marginal clinical benefits to most HCC patients. Therefore, new therapeutic approaches are needed for HCC treatment. Natural killer (NK) cells are cells of the innate immune system that can inhibit tumor development and progression. We find that pharmacological inhibition of EZH2 results in NK cell–mediated hepatic tumor growth inhibition in mice, which occurs, in part, due to the increased expression of the chemokine CXCL10, leading to increased NK cell migration. These results have implications for EZH2-dependent tumors, in which NK cell–mediated tumor clearance can be induced using EZH2 inhibitors.</jats:p
ALK inhibitors suppress HCC and synergize with anti-PD-1 therapy and ABT-263 in preclinical models
Summary: Hepatocellular carcinoma (HCC) currently lacks effective therapies, leaving a critical need for new treatment options. A previous study identified the anaplastic lymphoma kinase (ALK) amplification in HCC patients, raising the question of whether ALK inhibitors could be a viable treatment. Here, we showed that both ALK inhibitors and ALK knockout effectively halted HCC growth in cell cultures. Lorlatinib, a potent ALK inhibitor, suppressed HCC tumor growth and metastasis across various mouse models. Additionally, in an advanced immunocompetent humanized mouse model, when combined with an anti-PD-1 antibody, lorlatinib more potently suppressed HCC tumor growth, surpassing individual drug efficacy. Lorlatinib induced apoptosis and senescence in HCC cells, and the senolytic agent ABT-263 enhanced the efficacy of lorlatinib. Additional studies identified that the apoptosis-inducing effect of lorlatinib was mediated via GGN and NRG4. These findings establish ALK inhibitors as promising HCC treatments, either alone or in combination with immunotherapies or senolytic agents
CBX5 loss drives EGFR inhibitor resistance and results in therapeutically actionable vulnerabilities in lung cancer
Although epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFRi) are approved for treating EGFR-mutant lung adenocarcinoma (LUAD), emergence of acquired resistance limits their clinical benefits. Several mechanisms for acquired resistance to EGFRi in LUAD have been identified; however, the molecular basis for this resistance remains unknown in ~30% of LUAD. Chromatin and DNA modifiers and their regulators play important roles in determining response to anticancer therapies. Therefore, to identify nongenetic mechanisms of EGFRi resistance in LUAD, we performed an epigenome-wide shRNA screen targeting 363 human epigenetic regulator genes. This screen identified loss of the transcriptional repressor chromobox homolog 5 (CBX5) as a driver of EGFRi resistance in EGFR-mutant LUAD. Loss of CBX5 confers resistance to multiple EGFRi in both cell culture and mice. We found that CBX5 loss in EGFR-mutant LUAD cells leads to increased expression of the transcription factor E2F1, which in turn stimulates expression of the antiapoptotic gene BIRC5 (survivin). This E2F1-mediated upregulation of BIRC5 in CBX5-knockdown LUAD cells attenuates apoptosis induction following EGFRi treatment. Consistent with these results, knockdown of E2F1 or BIRC5 partly rescues CBX5-knockdown-induced EGFRi resistance in cell culture and mice. EGFRi-resistant LUAD cell lines show reduced CBX5 expression compared to parental lines; however, bromo- and extra-terminal (BET)-domain inhibitors (BETi) restore CBX5 expression in these cells and sensitize them to EGFRi/BETi combination therapy. Similarly, treatment with a BIRC5 inhibitor suppresses growth of EGFRi-resistant LUAD cells. Collectively, these studies identify CBX5 loss as a driver of EGFRi resistance and reveal therapeutic opportunities for treating EGFRi-resistant LUAD
Derailed estrogen signaling and breast cancer: An authentic couple
Estrogen or 17β-estradiol, a steroid hormone, plays a critical role in the development of mammary gland via acting through specific receptors. In particular, estrogen receptor-α (ERα) acts as a transcription factor and/or a signal transducer while participating in the development of mammary gland and breast cancer. Accumulating evidence suggests that the transcriptional activity of ERα is altered by the action of nuclear receptor coregulators and might be responsible, at least in part, for the development of breast cancer. In addition, this process is driven by various posttranslational modifications of ERα, implicating active participation of the upstream receptor modifying enzymes in breast cancer progression. Emerging studies suggest that the biological outcome of breast cancer cells is also influenced by the cross talk between microRNA and ERα signaling, as well as by breast cancer stem cells. Thus, multiple regulatory controls of ERα render mammary epithelium at risk for transformation upon deregulation of normal homeostasis. Given the importance that ERα signaling has in breast cancer development, here we will highlight how the activity of ERα is controlled by various regulators in a spatial and temporal manner, impacting the progression of the disease. We will also discuss the possible therapeutic value of ERα modulators as alternative drug targets to retard the progression of breast cancer
