396 research outputs found

    Ionized Gas Kinematics at High Resolution IV: Star Formation and a Rotating Core in the Medusa (NGC 4194)

    Get PDF
    NGC 4194 is a post-merger starburst known as The Medusa for its striking tidal features. We present here a detailed study of the structure and kinematics of ionized gas in the central 0.65 kpc of the Medusa. The data include radio continuum maps with resolution up to 0.18\arcsec (35 pc) and a 12.8μ12.8\mum [NeII] data cube with spectral resolution 4\sim4\kms: the first {\it high resolution, extinction-free} observations of this remarkable object. The ionized gas has the kinematic signature of a core in solid-body rotation. The starburst has formed a complex of bright compact \HII~regions, probably excited by deeply embedded super star clusters, but none of these sources is a convincing candidate for a galactic nucleus. The nuclei of the merger partners that created the Medusa have not yet been identified.Comment: to appear in Ap

    Scientific Objectives for UV/Visible Astrophysics Investigations: A Summary of Responses by the Community (2012)

    Get PDF
    Following several recommendations presented by the Astrophysics Decadal Survey 2010 centered around the need to define "a future ultraviolet-optical space capability," on 2012 May 25, NASA issued a Request for Information (RFI) seeking persuasive ultraviolet (UV) and visible wavelength astrophysics science investigations. The goal was to develop a cohesive and compelling set of science objectives that motivate and support the development of the next generation of ultraviolet/visible space astrophysics missions. Responses were due on 10 August 2012 when 34 submissions were received addressing a number of potential science drivers. A UV/visible Mission RFI Workshop was held on 2012 September 20 where each of these submissions was summarized and discussed in the context of each other. We present a scientific analysis of these submissions and presentations and the pursuant measurement capability needs, which could influence ultraviolet/visible technology development plans for the rest of this decade. We also describe the process and requirements leading to the inception of this community RFI, subsequent workshop and the expected evolution of these ideas and concepts for the remainder of this decade.Comment: 22 pages, 1 figure, 3 table

    Program Annual Technology Report: Cosmic Origins Program Office

    Get PDF
    What is the Cosmic Origins (COR) Program? From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? COR focuses on the second question. Scientists investigating this broad theme seek to understand the origin and evolution of the universe from the Big Bang to the present day, determining how the expanding universe grew into a grand cosmic web of dark matter enmeshed with galaxies and pristine gas, forming, merging, and evolving over time. COR also seeks to understand how stars and planets form from clouds in these galaxies to create the heavy elements that are essential to life, starting with the first generation of stars to seed the universe, and continuing through the birth and eventual death of all subsequent generations of stars. The COR Programs purview includes the majority of the field known as astronomy

    Cosmic Origins Program Annual Technology Report

    Get PDF
    What is the Cosmic Origins (COR) Program? From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? COR focuses on the second question. Scientists investigating this broad theme seek to understand the origin and evolution of the universe from the Big Bang to the present day, determining how the expanding universe grew into a grand cosmic web of dark matter enmeshed with galaxies and pristine gas, forming, merging, and evolving over time. COR also seeks to understand how stars and planets form from clouds in these galaxies to create the heavy elements that are essential to life starting with the first generation of stars to seed the universe, and continuing through the birth and eventual death of all subsequent generations of stars. The COR Programs purview includes the majority of the field known as astronomy, from antiquity to the present

    Minkowski's Object: A Starburst Triggered by a Radio Jet, Revisited

    Get PDF
    We present neutral hydrogen, ultraviolet, optical and near-infrared imaging, and optical spectroscopy, of Minkowski's Object (MO), a star forming peculiar galaxy near NGC 541. The observations strengthen evidence that star formation in MO was triggered by the radio jet from NGC 541. Key new results are the discovery of a 4.9E8 solar mass double HI cloud straddling the radio jet downstream from MO, where the jet changes direction and decollimates; strong detections of MO, also showing double structure, in UV and H-alpha; and numerous HII regions and associated clusters in MO. In UV, MO resembles the radio-aligned, rest-frame UV morphologies in many high redshift radio galaxies (HzRGs), also thought to be caused by jet-induced star formation. MO's stellar population is dominated by a 7.5 Myr-old, 1.9E7 solar mass instantaneous burst, with current star formation rate 0.52 solar masses per year (concentrated upstream from where the HI column density is high). This is unlike the jet-induced star formation in Centaurus A, where the jet interacts with pre-existing cold gas; in MO the HI may have cooled out of a warmer, clumpy intergalactic or interstellar medium as a result of jet interaction, followed by collapse of the cooling clouds and subsequent star formation (consistent with numerical simulations). Since the radio source that triggered star formation in MO is much less luminous, and therefore more common, than powerful HzRGs, and because the environment around MO is not particularly special in terms of abundant dense, cold gas, jet-induced star formation in the early universe might be even more prevalent than previously thought.Comment: 52 pages, 15 figures, accepted for publication in Ap

    Ultraviolet Imaging of the Globular Cluster 47 Tucanae

    Get PDF
    We have used the Ultraviolet Imaging Telescope to obtain deep far-UV (1620 Angstrom), 40' diameter images of the prototypical metal-rich globular cluster 47 Tucanae. We find a population of about 20 hot (Teff > 9000 K) objects near or above the predicted UV luminosity of the hot horizontal branch (HB) and lying within two half-light radii of the cluster center. We believe these are normal hot HB or post-HB objects rather than interacting binaries or blue stragglers. IUE spectra of two are consistent with post-HB phases. These observations, and recent HST photometry of two other metal-rich clusters, demonstrate that populations with rich, cool HB's can nonetheless produce hot HB and post-HB stars. The cluster center also contains an unusual diffuse far-UV source which is more extended than its V-band light. It is possible that this is associated with an intracluster medium, for which there was earlier infrared and X-ray evidence, and is produced by C IV emission or scattered light from grains.Comment: 13 pages AASLaTeX including one postscript figure and one bitmapped image, JPEG format. Submitted to the Astronomical Jorunal. Full Postscript version available at http://www.astro.virginia.edu/~bd4r

    Ultraviolet Imaging Observations of the cD Galaxy in Abell 1795: Further Evidence for Massive Star Formation in a Cooling Flow

    Full text link
    We present images from the Ultraviolet Imaging Telescope of the Abell 1795 cluster of galaxies. We compare the cD galaxy morphology and photometry of these data with those from existing archival and published data. The addition of a far--UV color helps us to construct and test star formation model scenarios for the sources of UV emission. Models of star formation with rates in the range \sim5-20M_{\sun}yr1^{-1} indicate that the best fitting models are those with continuous star formation or a recent (4\sim4 Myr old) burst superimposed on an old population. The presence of dust in the galaxy, dramatically revealed by HST images complicates the interpretation of UV data. However, we find that the broad--band UV/optical colors of this cD galaxy can be reasonably matched by models using a Galactic form for the extinction law with EBV=0.14E_{B-V}=0.14. We also briefly discuss other objects in the large UIT field of view.Comment: To appear in the Astrophysical Journal. 14 AAS preprint style pages plus 7 figure

    The Luminous Starburst Ring in NGC 7771: Sequential Star Formation?

    Get PDF
    Only two of the twenty highly luminous starburst galaxies analyzed by Smith et al. exhibit circumnuclear rings of star formation. These galaxies provide a link between 10^11 L_sun systems and classical, less-luminous ringed systems. We report the discovery of a near-infrared counterpart to the nuclear ring of radio emission in NGC 7771. A displacement between the ~10 radio bright clumps and the ~10 near-infrared bright clumps indicates the presence of multiple generations of star formation. The estimated thermal emission from each radio source is equivalent to that of ~35000 O6 stars. Each near-infrared bright knot contains ~5000 red supergiants, on average. The stellar mass of each knot is estimated to be ~10^7 M_sun. The implied time-averaged star formation rate is \~40 M_sun per yr. Several similarities are found between the properties of this system and other ringed and non-ringed starbursts. Morphological differences between NGC 7771 and the starburst + Seyfert 1 galaxy NGC 7469 suggest that NGC 7771 may not be old enough to fuel an AGN, or may not be capable of fueling an AGN. Alternatively, the differences may be unrelated to the presence or absence of an AGN and may simply reflect the possibility that star formation in rings is episodic.Comment: accepted for publication in The Astrophysical Journal (10 January 1999); 48 pages including 13 figures; AAS LaTe
    corecore