988 research outputs found
Proteasomal Interference Prevents Zona Pellucida Penetration and Fertilization in Mammals
doi: 10.1095/biolreprod.104.032532The ubiquitin-proteasome pathway has been implicated in the penetration of ascidian vitelline envelope by the fertilizing
spermatozoon (Sawada et al., Proc Natl Acad Sci U S A 2002; 99:1223-1228). The present study provides experimental evidence
demonstrating proteasome involvement in the penetration of mammalian zona pellucida (ZP). Using porcine in vitro fertilization as a model, penetration of ZP was completely inhibited by specific proteasomal inhibitors MG-132 and lactacystin. Three commercial rabbit sera recognizing 20S proteasomal
core subunits b-1i, b-2i, a-6, and b-5 completely blocked fertilization at a very low concentration (i.e., diluted 1/2000 to 1/8000 in fertilization medium). Neither proteasome inhibitors nor antibodies had any effects on sperm-ZP binding and acrosome exocytosis in zona-enclosed oocytes or on fertilization
rates in zona-free oocytes, which were highly polyspermic. Consistent with a possible role of ubiquitin-proteasome pathway in ZP penetration, ubiquitin and various a and b type proteasomal subunits were detected in boar sperm acrosome by specific antibodies,
immunoprecipitated and microsequenced by MALDITOF from boar sperm extracts. Antiubiquitin-immunoreactive substrates were detected on the outer face of ZP by epifluorescence microscopy. This study therefore provides strong evidence implicating the ubiquitin-proteasome pathway in mammalian
fertilization and zona penetration. This finding opens a new line of acrosome/ZP research because further studies of the sperm
acrosomal proteasome can provide new tools for the management of polyspermia during in vitro fertilization and identify new targets for contraceptive development
Semen levels of spermatid-specific thioredoxin-3 correlate with pregnancy rates in ART couples
Spermatid specific thioredoxin-3 (SPTRX3 or TXNDC8) is a testis/male germ line specific member of thioredoxin family that accumulates in the superfluous cytoplasm of defective human spermatozoa. We hypothesized that semen levels of SPTRX3 are reflective of treatment outcome in assisted reproductive therapy (ART) couples treated by in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI). Relationship between SPTRX3 and treatment outcome was investigated in 239 couples undergoing ART at an infertility clinic. Sperm content of SPTRX3 was evaluated by flow cytometry and epifluorescence microscopy, and correlated with clinical semen analysis parameters, and data on embryo development and pregnancy establishment. High SPTRX3 levels (>15% SPTRX3-positive spermatozoa) were found in 51% of male infertility patients (n¿=¿72), in 20% of men from couples with unexplained, idiopathic infertility (n¿=¿61) and in 14% of men from couples previously diagnosed with female-only infertility (n¿=¿85). Couples with high SPTRX3 produced fewer two-pronuclear zygotes and had a reduced pregnancy rate (19.2% pregnant with >15% SPTRX3-positive spermatozoa vs. 41.2% pregnant with 15% of SPTRX3-positive spermatozoa, a cutoff value established by ROC analysis, had their chance of fathering children by IVF or ICSI reduced by nearly two-thirds. The percentage of SPTRX3-positive spermatozoa had predictive value for pregnancy after ART. Gradient purification and sperm swim-up failed to remove all SPTRX3-positive spermatozoa from semen prepared for ART. In summary, the elevated semen content of SPTRX3 in men from ART couples coincided with reduced incidence of pregnancy by IVF or ICSI, identifying SPTRX3 as a candidate biomarker reflective of ART outcomeThis study was funded by grant number 1R21HD066333-01A1 from the National Institutes of Health, NICHD, grant number CB000414 from the Research Board of the University of Missouri, seed funding from the Food for The 21st Century Program of the University of Missouri and Undergraduate Summer Research Internship, College of Agriculture, Food and Natural Resources (CAFNR), University of Missouri.Peer Reviewe
Ubiquitin C-terminal hydrolase-activity is involved in sperm acrosomal function and anti-polyspermy defense during porcine fertilization
The 26S proteasome, which is a multi-subunit protease with specificity for substrate proteins that are postranslationally modified by ubiquitination, has been implicated in acrosomal function and sperm-zona pellucida (ZP) penetration during mammalian fertilization. Ubiquitin C-terminal hydrolases (UCHs) are responsible for the removal of polyubiquitin chains during substrate priming for proteasomal proteolysis. The inhibition of deubiquitination increases the rate of proteasomal proteolysis. Consequently, we have hypothesized that inhibition of sperm acrosome-borne UCHs increases the rate of sperm-ZP penetration and polyspermy during porcine in vitro fertilization (IVF). Ubiquitin aldehyde (UA), which is a specific nonpermeating UCH inhibitor, significantly (P < 0.05) increased polyspermy during porcine IVF and reduced (P < 0.05) UCH enzymatic activity measured in motile boar spermatozoa using a specific fluorometric UCH substrate, ubiquitin-AMC. Antibodies against two closely related UCHs, UCHL1 and UCHL3, detected these UCHs in the oocyte cortex and on the sperm acrosome, respectively, and increased the rate of polyspermy during IVF, consistent with the UA-induced polyspermy surge. In the oocyte, UCHL3 was primarily associated with the meiotic spindle. Sperm-borne UCHL3 was localized to the acrosomal surface and coimmunoprecipitated with a peripheral acrosomal membrane protein, spermadhesin AQN1. Recombinant UCHs, UCHL3, and isopeptidase T reduced polyspermy when added to the fertilization medium. UCHL1 was detected in the oocyte cortex but not on the sperm surface, and was partially degraded 6-8 h after fertilization. Enucleated oocyte-somatic cell electrofusion caused polarized redistribution of cortical UCHL1. We conclude that sperm-acrosomal UCHs are involved in sperm-ZP interactions and antipolyspermy defense. Modulation of UCH activity could facilitate the management of polyspermy during IVF and provide insights into male infertility
Explaining inference on a population of independent agents using Bayesian networks
The main goal of this research is to design, implement, and evaluate a novel explanation method, the hierarchical explanation method (HEM), for explaining Bayesian network (BN) inference when the network is modeling a population of conditionally independent agents, each of which is modeled as a subnetwork. For example, consider disease-outbreak detection in which the agents are patients who are modeled as independent, conditioned on the factors that cause disease spread. Given evidence about these patients, such as their symptoms, suppose that the BN system infers that a respiratory anthrax outbreak is highly likely. A public-health official who received such a report would generally want to know why anthrax is being given a high posterior probability. The HEM explains such inferences. The explanation approach is applicable in general to inference on BNs that model conditionally independent agents; it complements previous approaches for explaining inference on BNs that model a single agent (e.g., for explaining the diagnostic inference for a single patient using a BN that models just that patient). The hypotheses that were tested are: (1) the proposed explanation method provides information that helps a user to understand how and why the inference results have been obtained, (2) the proposed explanation method helps to improve the quality of the inferences that users draw from evidence
Transmission of mitochondrial DNA following assisted reproduction and nuclear transfer
Review of the articleMitochondria are the organelles responsible for producing the majority of a cell's ATP and also play an essential role in gamete maturation and embryo development. ATP production within the mitochondria is dependent on proteins encoded by both the nuclear and the mitochondrial genomes, therefore co-ordination between the two genomes is vital for cell survival. To assist with this co-ordination, cells normally contain only one type of mitochondrial DNA (mtDNA) termed homoplasmy. Occasionally, however, two or more types of mtDNA are present termed heteroplasmy. This can result from a combination of mutant and wild-type mtDNA molecules or from a combination of wild-type mtDNA variants. As heteroplasmy can result in mitochondrial disease, various mechanisms exist in the natural fertilization process to ensure the maternal-only transmission of mtDNA and the maintenance of homoplasmy in future generations. However, there is now an increasing use of invasive oocyte reconstruction protocols, which tend to bypass mechanisms for the maintenance of homoplasmy, potentially resulting in the transmission of either form of mtDNA heteroplasmy. Indeed, heteroplasmy caused by combinations of wild-type variants has been reported following cytoplasmic transfer (CT) in the human and following nuclear transfer (NT) in various animal species. Other techniques, such as germinal vesicle transfer and pronuclei transfer, have been proposed as methods of preventing transmission of mitochondrial diseases to future generations. However, resulting embryos and offspring may contain mtDNA heteroplasmy, which itself could result in mitochondrial disease. It is therefore essential that uniparental transmission of mtDNA is ensured before these techniques are used therapeutically
Representing Variable Source Credibility in Intelligence Analysis with Bayesian Networks
Assessing the credibility of an evidential source is an important part of intelligence analysis, particularly where human intelligence is concerned. Furthermore, it is frequently necessary to combine multiple items of evidence with varying source credibilities. Bayesian networks provide a powerful probabilistic approach to the fusion of information and are increasingly being applied in a wide variety of settings. In this paper we explore their application to intelligence analysis and provide a simple example concerning a potential attack on an infrastructure target. Our main focus is on the representation of source credibility. While we do not advocate the routine use of quantitative Bayesian networks for intelligence analysis, we do believe that their qualitative structure offers a useful framework for evidence marshalling. Furthermore, we believe that quantified Bayesian networks can also play a part in providing auxiliary models to explore particular situations within a coherent probabilistic framework. This process can generate fresh insights and help to stimulate new hypotheses and avenues of enquiry
The consequences of nuclear transfer for mammalian foetal development and offspring survival : a mitochondrial DNA perspective
Review of the articleThe introduction of nuclear transfer (NT) and other technologies that involve embryo reconstruction require us to reinvestigate patterns of mitochondrial DNA (mtDNA) transmission, transcription and replication. MtDNA is a 16.6 kb genome located within each mitochondrion. The number of mitochondria and mtDNA copies per organelle is specific to each cell type. MtDNA is normally transmitted through the oocyte to the offspring. However, reconstructed oocytes often transmit both recipient oocyte mtDNA and mtDNA associated with the donor nucleus. We argue that the transmission of two populations of mtDNA may have implications for offspring survival as only one allele might be actively transcribed. This could result in the offspring phenotypically exhibiting mtDNA depletion-type syndromes. A similar occurrence could arise when nucleo-cytoplasmic interactions fail to regulate mtDNA transcription and replication, especially as the initiation of mtDNA replication post-implantation is a key developmental event. Furthermore, failure of the donor somatic nucleus to be reprogrammed could result in the early initiation of replication and the loss of cellular mtDNA specificity. We suggest investigations should be conducted to enhance our understanding of nucleo-cytoplasmic interactions in order to improve NT efficiency
Commercialization of novel biomarkers of male fertility in humans and farm animals
Scientifically Led National Enterprises PanelEach year, US infertility clinics treat 135,000 couples who fail to conceive naturally. Up to 40% of these infertility cases can be attributed to male infertility stemming from poor sperm quality. An additional 20% of couples present at the clinic with idiopathic, unexplained infertility, some of which is in fact hidden, misdiagnosed male infertility. Due to a paucity of accurate diagnostic methods and efficient treatments, the success rate of assisted fertilization, measured by live births, stagnates around the disappointing 35% margin. Many parallels exist between human male infertility and male reproductive performance in farm animals, where the estimated losses from inferior reproductive performance amount to millions of dollars annually, according to USDA
Sperm Proteasomes Degrade Sperm Receptor on the Egg Zona Pellucida during Mammalian Fertilization
Despite decades of research, the mechanism by which the fertilizing spermatozoon penetrates the mammalian vitelline membrane, the zona pellucida (ZP) remains one of the unexplained fundamental events of human/mammalian development. Evidence has been accumulating in support of the 26S proteasome as a candidate for echinoderm, ascidian and mammalian egg coat lysin. Monitoring ZP protein degradation by sperm during fertilization is nearly impossible because those few spermatozoa that penetrate the ZP leave behind a virtually untraceable residue of degraded proteins. We have overcome this hurdle by designing an experimentally consistent in vitro system in which live boar spermatozoa are co-incubated with ZP-proteins (ZPP) solubilized from porcine oocytes. Using this assay, mimicking sperm-egg interactions, we demonstrate that the sperm-borne proteasomes can degrade the sperm receptor protein ZPC. Upon coincubation with motile spermatozoa, the solubilized ZPP, which appear to be ubiquitinated, adhered to sperm acrosomal caps and induced acrosomal exocytosis/formation of the acrosomal shroud. The degradation of the sperm receptor protein ZPC was assessed by Western blotting band-densitometry and proteomics. A nearly identical pattern of sperm receptor degradation, evident already within the first 5 min of coincubation, was observed when the spermatozoa were replaced with the isolated, enzymatically active, sperm-derived proteasomes. ZPC degradation was blocked by proteasomal inhibitors and accelerated by ubiquitin-aldehyde(UBAL), a modified ubiquitin protein that stimulates proteasomal proteolysis. Such a degradation pattern of ZPC is consistent with in vitro fertilization studies, in which proteasomal inhibitors completely blocked fertilization, and UBAL increased fertilization and polyspermy rates. Preincubation of intact zona-enclosed ova with isolated active sperm proteasomes caused digestion, abrasions and loosening of the exposed zonae, and significantly reduced the fertilization/polyspermy rates after IVF, accompanied by en-mass detachment of zona bound sperm. Thus, the sperm borne 26S proteasome is a candidate zona lysin in mammals. This new paradigm has implications for contraception and assisted reproductive technologies in humans, as well as animals
- …
