4,483 research outputs found
GRAIL – Grid Access and Instrumentation Tool
Since the release of Globus Toolkit 4 Web services enrich the world of Grid Computing. They provide methods to develop modular Grid applications which can be parallelized easily. The access to Web services is mostly solved by complex command line tools which need a good deal of knowledge of the underlaying Grid technologies. GRAIL is intended to fill the gap between existing Grid access methods and both the developer who wants to utilize the Grid for own developments and the user who wants to access the Grid without much additional knowledge. It simplifies the access and the testing of Web services for the Globus Grid middleware. GRAIL provides an easy to use graphical user interface for executing Web services and enables the user to construct complex relationships between services to realize parallel execution. The underlying framework allows an easy integration of any Web service or other arbitrary task without much additional effort for the developer. Existing technologies, shipped with the Globus Toolkit, are seamlessly integrated into GRAIL
Oblique stacking of three-dimensional dome islands in Ge/Si multilayers
The organization of Ge "dome" islands in Ge/Si multilayers has been investigated by cross-sectional transmission electron microscopy. Ge domes are found to spontaneously arrange in oblique stacks, replicating at a well-defined angle from one bilayer to the next. The formation of oblique island stacks is governed by a complex interplay of surface strain, generated by the already buried islands, and surface curvature, caused by the inherent tendency of large domes to carve out material from the surrounding planar substrate. (C) 2001 American Institute of Physics
Structurally adaptive space crane concept for assembling space systems on orbit
Many future human space exploration missions will probably require large vehicles that must be assembled on orbit. Thus, a device that can move, position, and assemble large and massive spacecraft components on orbit becomes essential for these missions. A concept is described for such a device: a space crane concept that uses erectable truss hardware to achieve high-stiffness and low-mass booms and uses articulating truss joints that can be assembled on orbit. The hardware has been tested and shown to have linear load-deflection response and to be structurally predictable. The hardware also permits the crane to be reconfigured into different geometries to satisfy future assembly requirements. A number of articulating and rotary joint concepts have been sized and analyzed, and the results are discussed. Two strategies were proposed to suppress motion-induced vibration: placing viscous dampers in selected truss struts and preshaping motion commands. Preliminary analyses indicate that these techniques have the potential to greatly enhance structural damping
Evidence for Adsorption of Chlorine Species on Iron(III) (hydr)oxides in the Sheepbed Mudstone, Gale Crater, Mars
Chlorine is a widespread element on Mars present in dust, soils and rocks, including the Sheepbed mudstone at Yellowknife Bay, Gale crater. Combined elemental and volatile analyses of two drilled samples, Cumberland and John Klein, indicated that chloride (Cl-) and perchlorate (ClO4 -) are likely present in the mudstone. The nature of chlorine species in Sheepbed mudstone is still not well constrained. It has been proposed that both are present as amorphous or crystalline salts physically mixed with mudstone minerals. We alternatively hypothesize that adsorbed perchlorate and chloride exist in the mudstone and adsorption could occur, in particular, on Fe(III) (hydr)oxide phases as supported by laboratory observations on terrestrial materials. Mineralogical and compositional analyses of the drilled Cumberland mudstone sample revealed the presence of ~30 wt% of a Fe-rich X-ray amorphous phase. Ferrihydrite has been proposed as a component of the Fe-rich X-ray amorphous material. The objectives of this work were to determine adsorption of perchlorate and chloride on ferrihydrite and to enable data comparison by characterizing adsorbed chloride and perchlorate with thermal and evolved gas analysis run under operating conditions similar to the SAM instrument onboard the Curiosity rover
Parametric infrared tunable laser system
A parametric tunable infrared laser system was built to serve as transmitter for the remote detection and density measurement of pollutant, poisonous, or trace gases in the atmosphere. The system operates with a YAG:Nd laser oscillator amplifier chain which pumps a parametric tunable frequency converter. The completed system produced pulse energies of up to 30 mJ. The output is tunable from 1.5 to 3.6 micrometers at linewidths of 0.2-0.5 /cm (FWHM), although the limits of the tuning range and the narrower line crystals presently in the parametric converter by samples of the higher quality already demonstrated is expected to improve the system performance further
Aftershocks of the Loss of the Legislative Veto: Severability and the Need for a Replacement Device
Atom clusters and vibrational excitations in chemically-disordered Pt357Fe
Inelastic nuclear resonant scattering spectra of Fe-57 atoms were measured on crystalline alloys of Pt3Fe-57 that were chemically disordered, partially ordered, and L1(2) ordered. Phonon partial density of states curves for Fe-57 were obtained from these spectra. Upon disordering, about 10% of the spectral intensity underwent a distinct shift from 25 to 19 meV. This change in optical modes accounted for most of the change of the vibrational entropy of disordering contributed by Fe atoms, which was (+0.10 +/- 0.03) k(B) (Fe atom)(-1). Prospects for parametrizing the vibrational entropy with low-order cluster variables were assessed. To calculate the difference in vibrational entropy of the disordered and ordered alloys, the clusters must be large enough to account for the abundances of several of the atom configurations of the first-nearest-neighbor shell about the Fe-57 atoms
A variational approach to moment-closure approximations for the kinetics of biomolecular reaction networks
Approximate solutions of the chemical master equation and the chemical
Fokker-Planck equation are an important tool in the analysis of biomolecular
reaction networks. Previous studies have highlighted a number of problems with
the moment-closure approach used to obtain such approximations, calling it an
ad-hoc method. In this article, we give a new variational derivation of
moment-closure equations which provides us with an intuitive understanding of
their properties and failure modes and allows us to correct some of these
problems. We use mixtures of product-Poisson distributions to obtain a flexible
parametric family which solves the commonly observed problem of divergences at
low system sizes. We also extend the recently introduced entropic matching
approach to arbitrary ansatz distributions and Markov processes, demonstrating
that it is a special case of variational moment closure. This provides us with
a particularly principled approximation method. Finally, we extend the above
approaches to cover the approximation of multi-time joint distributions,
resulting in a viable alternative to process-level approximations which are
often intractable.Comment: Minor changes and clarifications; corrected some typo
Impatience and Uncertainty: Experimental Decisions Predict Adolecents' Field Behavior
We study risk attitudes, ambiguity attitudes, and time preferences of 661 children and
adolescents, aged ten to eighteen years, in an incentivized experiment. We relate experimental
choices to field behavior. Experimental measures of impatience are found to be significant
predictors of health related field behavior and saving decisions. In particular, more impatient
children and adolescents are more likely to spend money on alcohol and cigarettes, have a higher
body mass index (BMI) and are less likely to save money. Experimental measures for risk and
ambiguity attitudes are only weak predictors of field behavior
Impatience and Uncertainty: Experimental Decisions Predict Adolescents' Field Behavior
We study risk attitudes, ambiguity attitudes, and time preferences of 661 children and adolescents, aged ten to eighteen years, in an incentivized experiment. We relate experimental choices to field behavior. Experimental measures of impatience are found to be significant predictors of health related field behavior and saving decisions. In particular, more impatient children and adolescents are more likely to spend money on alcohol and cigarettes, have a higher body mass index (BMI) and are less likely to save money. Experimental measures for risk and ambiguity attitudes are only weak predictors of field behavior.experiments with children and adolescents, risk, ambiguity, time preferences, health status, savings, external validity, field behavior
- …
