127 research outputs found

    Rapid submarine ice melting in the grounding zones of ice shelves in West Antarctica.

    Get PDF
    Enhanced submarine ice-shelf melting strongly controls ice loss in the Amundsen Sea embayment (ASE) of West Antarctica, but its magnitude is not well known in the critical grounding zones of the ASE's major glaciers. Here we directly quantify bottom ice losses along tens of kilometres with airborne radar sounding of the Dotson and Crosson ice shelves, which buttress the rapidly changing Smith, Pope and Kohler glaciers. Melting in the grounding zones is found to be much higher than steady-state levels, removing 300-490 m of solid ice between 2002 and 2009 beneath the retreating Smith Glacier. The vigorous, unbalanced melting supports the hypothesis that a significant increase in ocean heat influx into ASE sub-ice-shelf cavities took place in the mid-2000s. The synchronous but diverse evolutions of these glaciers illustrate how combinations of oceanography and topography modulate rapid submarine melting to hasten mass loss and glacier retreat from West Antarctica

    Ефективність і конкурентоспроможність підприємств

    Get PDF
    Стаття присвячена пошуку зв'язку між поняттями ефективність і конкурентоспроможність та вивченню основних чинників, що впливають на отримання і утримання конкурентоспроможності протягом тривалого часу.Статья посвящена отысканию связи между понятиями "эффективность" и "конкурентоспособность" и изучению основных факторов, влияющих на достижение и удержание конкурентоспособности в долгосрочной перспективе.The article is devoted to searching a tie between the notions of "effectiveness" and "competitiveness"; and scrutinizing main factors, which effect reaching and keeping competitiveness in a long-term perspective

    Mechanisms driving variability in the ocean forcing of Pine Island Glacier

    Get PDF
    Pine Island Glacier (PIG) terminates in a rapidly melting ice shelf, and ocean circulation and temperature are implicated in the retreat and growing contribution to sea level rise of PIG and nearby glaciers. However, the variability of the ocean forcing of PIG has been poorly constrained due to a lack of multi-year observations. Here we show, using a unique record close to the Pine Island Ice Shelf (PIIS), that there is considerable oceanic variability at seasonal and interannual timescales, including a pronounced cold period from October 2011 to May 2013. This variability can be largely explained by two processes: cumulative ocean surface heat fluxes and sea ice formation close to PIIS; and interannual reversals in ocean currents and associated heat transport within Pine Island Bay, driven by a combination of local and remote forcing. Local atmospheric forcing therefore plays an important role in driving oceanic variability close to PIIS

    Understanding biases in ICESat-2 data due to subsurface scattering using Airborne Topographic Mapper waveform data

    Get PDF
    The process of laser light reflecting from surfaces made of scattering materials that do not strongly absorb at the wavelength of the laser can involve reflections from hundreds or thousands of individual grains, which can introduce delays in the time between light entering and leaving the surface. These time-of-flight biases depend on the grain size and density of the medium, and thus they can result in spatially and temporally varying surface height biases estimated from laser altimeters, such as NASA's ICESat-2 (Ice Cloud, and land Elevation Satellite-2) mission. Modeling suggests that ICESat-2 might experience a bias difference as large as 0.1–0.2 m between coarse-grained melting snow and fine-grained wintertime snow (Smith et al., 2018), which exceeds the mission's requirement to measure seasonal height differences to an accuracy better than 0.1 m (Markus et al., 2017). In this study, we investigate these biases using a model of subsurface scattering, laser altimetry measurements from NASA's ATM (Airborne Topographic Mapper) system, and grain size estimates based on optical imagery of the ice sheet. We demonstrate that distortions in the shapes of waveforms measured using ATM are related to the optical grain size of the surface estimated using optical reflectance measurements and show that they can be used to estimate an effective grain radius for the surface. Using this effective grain radius as a proxy for the severity of subsurface scattering, we use our model with grain size estimates from optical imagery to simulate corrections for biases in ICESat-2 data due to subsurface scattering and demonstrate that, on the basis of large-scale averages, the corrections calculated based on the satellite optical imagery match the biases in the data. This work demonstrates that waveform-based altimetry data can measure the optical properties of granular surfaces and that corrections based on optical grain size estimates can correct for subsurface-scattering biases in ICESat-2 data.</p

    A case study of mesospheric planetary waves observed over a three-radar network using empirical mode decomposition

    Get PDF
    In this paper an attempt is made to study equatorial Kelvin waves using a network of three radars: Kototabang (0.204° S, 100.320° E) meteor radar, Pameungpeuk (7.646° S, 107.688° E) medium-frequency radar, and Pontianak (0.003° S, 109.367° E) medium-frequency radar. We have used the continuous data gathered from the three radars during April–May 2010. Empirical mode decomposition (EMD), Lomb–Scargle periodogram (LSP) analysis, and wavelet techniques are used to study the temporal and altitude structures of planetary waves. Here, we used a novel technique called EMD to extract the planetary waves from wind data. The planetary waves of  ∼  6.5 and  ∼  3.6 days periodicity are observed in all three radar stations with peak amplitudes of about 12 and 11 m s−1, respectively. The 3.6-day wave has an average vertical wavelength from the three radars of about 42 km. The 3.6- and 6.5-day planetary waves are particularly strong in the zonal wind component. We find that the two waves are present at the 84–94 km height region. The observed features of the 3.6- and 6.5-day waves at the three tropical-latitude stations show some correspondence with the results reported for the equatorial-latitude stations

    Community estimate of global glacier mass changes from 2000 to 2023

    Get PDF
    \ua9 The Author(s) 2025. Glaciers are indicators of ongoing anthropogenic climate change1. Their melting leads to increased local geohazards2, and impacts marine3 and terrestrial4,5 ecosystems, regional freshwater resources6, and both global water and energy cycles7,8. Together with the Greenland and Antarctic ice sheets, glaciers are essential drivers of present9,10 and future11, 12–13 sea-level rise. Previous assessments of global glacier mass changes have been hampered by spatial and temporal limitations and the heterogeneity of existing data series14, 15–16. Here we show in an intercomparison exercise that glaciers worldwide lost 273 \ub1 16 gigatonnes in mass annually from 2000 to 2023, with an increase of 36 \ub1 10% from the first (2000–2011) to the second (2012–2023) half of the period. Since 2000, glaciers have lost between 2% and 39% of their ice regionally and about 5% globally. Glacier mass loss is about 18% larger than the loss from the Greenland Ice Sheet and more than twice that from the Antarctic Ice Sheet17. Our results arise from a scientific community effort to collect, homogenize, combine and analyse glacier mass changes from in situ and remote-sensing observations. Although our estimates are in agreement with findings from previous assessments14, 15–16 at a global scale, we found some large regional deviations owing to systematic differences among observation methods. Our results provide a refined baseline for better understanding observational differences and for calibrating model ensembles12,16,18, which will help to narrow projection uncertainty for the twenty-first century11,12,18
    corecore